Patents by Inventor Moneesh Upmanyu

Moneesh Upmanyu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220332406
    Abstract: Morphable active corrugate structure and aeronautical wings are provided herein including one or more skins or envelopes, and a sheet having independently actuable hinge domains attached to the one or more skins or envelopes and independently actuable facet domains, each of the hinge domains and facet domains configured with through-thickness differential expansion coefficients, wherein differential strains in at least one of the hinge domains or the facet domains cause the sheet to expand or contract along a flexible axis of the sheet, wherein the sheet is attached to the upper and lower skins at respective upper and lower of the hinge domains.
    Type: Application
    Filed: April 15, 2022
    Publication date: October 20, 2022
    Inventors: Moneesh UPMANYU, Raman VAIDYA
  • Publication number: 20210302410
    Abstract: Described herein are devices containing freestanding, ultrathin (<10 nm thick) membranes and methods of making such devices. Also described are methods of using devices containing freestanding ultrathin membranes for determining the sequence of a polynucleotide and for desalination of aqueous solutions.
    Type: Application
    Filed: June 10, 2021
    Publication date: September 30, 2021
    Inventors: Pradeep WADUGE, Joseph LARKIN, Moneesh UPMANYU, Swastik KAR, Meni WANUNU
  • Publication number: 20160282326
    Abstract: Devices contain freestanding, ultra thin (<10 nm thick) membranes and methods of making such devices. Methods of using devices contain freestanding ultra thin membranes for determining the sequence of a polynucleotide and for desalination of aqueous solutions. A device containing: a substrate having an upper surface, a lower surface, and an aperture, the aperture having one or more walls connecting the upper and lower surfaces and forming a well; and a membrane attached to the lower surface of the substrate and forming a floor of the well, the membrane having a thickness of less than 10 nm. The electrical conductance across the membrane is less than 1 nS/?m2.
    Type: Application
    Filed: November 25, 2014
    Publication date: September 29, 2016
    Inventors: Pradeep Waduge, Joseph Larkin, Moneesh Upmanyu, Swastik Kar, Meni Wanunu
  • Patent number: 8784673
    Abstract: Methods for fabricating templates for nanoelement assembly and methods for fluid-guided assembly of nanoelements are provided. Templates are fabricated by plasma modification of surface hydrophilicity and production of a network of hydrophobic trenches having a hydrophilic bottom surface. Single-walled carbon nanotubes (SWNT) can be assembled into stable films, ribbons, and wires of nanoscale thickness and nanoscale or microscale width and length. The nanofilm assemblies prepared according to the invention are highly conductive and can be used in the fabrication of a wide variety of microscale and nanoscale electronic devices.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: July 22, 2014
    Assignee: Northeastern University
    Inventors: Xugang Xiong, Laila Jaberansari, Ahmed Busnaina, Yung Joon Jung, Sivasubramanian Somu, Moneesh Upmanyu
  • Publication number: 20100183844
    Abstract: Methods for fabricating templates for nanoelement assembly and methods for fluid-guided assembly of nanoelements are provided. Templates are fabricated by plasma modification of surface hydrophilicity and production of a network of hydrophobic trenches having a hydrophilic bottom surface. Single-walled carbon nanotubes (SWNT) can be assembled into stable films, ribbons, and wires of nanoscale thickness and nanoscale or microscale width and length. The nanofilm assemblies prepared according to the invention are highly conductive and can be used in the fabrication of a wide variety of microscale and nanoscale electronic devices.
    Type: Application
    Filed: November 16, 2009
    Publication date: July 22, 2010
    Inventors: Xugang Xiong, Laila Jaberansari, Ahmed Busnaina, Yung Joon Jung, Sivasubramanian Somu, Moneesh Upmanyu