Patents by Inventor Moritz Hauf

Moritz Hauf has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230290885
    Abstract: A single chip power diode includes a semiconductor body having an anode region coupled to a first load terminal and a cathode region coupled to a second load terminal. An edge termination region surrounding an active region is terminated by a chip edge. The semiconductor body thickness is defined by a distance between at least one first interface area formed between the first load terminal and the anode region and a second interface area formed between the second load terminal and the cathode region. At least one inactive subregion is included in the active region. Each inactive subregion: has a blocking area with a minimal lateral extension of at least 20% of a drift region thickness; configured to prevent crossing of the load current between the first load terminal and the semiconductor body through the blocking area; and at least partially not arranged adjacent to the edge termination region.
    Type: Application
    Filed: April 19, 2023
    Publication date: September 14, 2023
    Inventors: Guang Zeng, Moritz Hauf, Anton Mauder
  • Patent number: 11664464
    Abstract: A single chip power diode includes a semiconductor body having an anode region coupled to a first load terminal and a cathode region coupled to a second load terminal. An edge termination region surrounding an active region is terminated by a chip edge. The semiconductor body thickness is defined by a distance between at least one first interface area formed between the first load terminal and the anode region and a second interface area formed between the second load terminal and the cathode region. At least one inactive subregion is included in the active region. Each inactive subregion: has a blocking area with a minimal lateral extension of at least 20% of a drift region thickness; configured to prevent crossing of the load current between the first load terminal and the semiconductor body through the blocking area; and at least partially not arranged adjacent to the edge termination region.
    Type: Grant
    Filed: July 20, 2021
    Date of Patent: May 30, 2023
    Assignee: Infineon Technologies Austria AG
    Inventors: Guang Zeng, Moritz Hauf, Anton Mauder
  • Publication number: 20220406922
    Abstract: A semiconductor device includes: a drift region of a first conductivity type arranged between first and second surfaces of a semiconductor body; a first region of the first conductivity type at the second surface; a second region of a second conductivity type arranged adjacent to the first region at the second surface, the second region including first and second sub-regions, the second sub-region arranged between the first sub-region and the second surface; and a first electrode on the second surface and arranged directly adjacent to the first region and the second sub-region. The first electrode is electrically connected to the drift region by the first region. The first sub-region protrudes, along a first lateral direction, over an interface or a separation region between the second sub-region and the first region. A part of the first region is confined by the first sub-region and the first electrode along a vertical direction.
    Type: Application
    Filed: June 10, 2022
    Publication date: December 22, 2022
    Inventors: Moritz Hauf, Frank Dieter Pfirsch
  • Publication number: 20220375811
    Abstract: A power semiconductor device includes, an active area that conducts load current between first and second load terminal structures, a drift region, and a backside region that includes, inside the active area, first and second backside emitter zones one or both of which includes: first sectors having at least one first region of a second conductivity type contacting the second load terminal structure and a smallest lateral extension of at most 50 ?m; and/or second sectors having a second region of the second conductivity type contacting the second load terminal structure and a smallest lateral extension of at least 50 ?m. The emitter zones differ by at least of: the presence of first and/or second sectors; smallest lateral extension of first and/or second sectors; lateral distance between neighboring first and/or second sectors; smallest lateral extension of the first regions; lateral distance between neighboring first regions within the same first sector.
    Type: Application
    Filed: May 11, 2022
    Publication date: November 24, 2022
    Inventors: Roman Baburske, Moritz Hauf, Hans-Joachim Schulze, Holger Schulze, Benedikt Stoib
  • Patent number: 11437471
    Abstract: A power semiconductor device includes: a semiconductor body; a first load terminal structure coupled to the body front side and a second load terminal structure coupled to the body backside; an active area for conducting a load current between the load terminal structures; a drift region having a first conductivity type; a backside region arranged at the backside and including, inside the active area, first and second backside emitter zones. At least one of the backside emitter zones includes: first sectors each having at least one first region of a second conductivity type, the first region arranged in contact with the second load terminal structure and having a smallest lateral extension of at most 50 ?m; and/or second sectors each having a second region of the second conductivity type arranged in contact with the second load terminal structure and having a smallest lateral extension of at least 50 ?m.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: September 6, 2022
    Assignee: Infineon Technologies AG
    Inventors: Roman Baburske, Moritz Hauf, Hans-Joachim Schulze, Holger Schulze, Benedikt Stoib
  • Publication number: 20220029030
    Abstract: A single chip power diode includes a semiconductor body having an anode region coupled to a first load terminal and a cathode region coupled to a second load terminal. An edge termination region surrounding an active region is terminated by a chip edge. The semiconductor body thickness is defined by a distance between at least one first interface area formed between the first load terminal and the anode region and a second interface area formed between the second load terminal and the cathode region. At least one inactive subregion is included in the active region. Each inactive subregion: has a blocking area with a minimal lateral extension of at least 20% of a drift region thickness; configured to prevent crossing of the load current between the first load terminal and the semiconductor body through the blocking area; and at least partially not arranged adjacent to the edge termination region.
    Type: Application
    Filed: July 20, 2021
    Publication date: January 27, 2022
    Inventors: Guang Zeng, Moritz Hauf, Anton Mauder
  • Publication number: 20210193800
    Abstract: A power semiconductor device includes: a semiconductor body; a first load terminal structure coupled to the body front side and a second load terminal structure coupled to the body backside; an active area for conducting a load current between the load terminal structures; a drift region having a first conductivity type; a backside region arranged at the backside and including, inside the active area, first and second backside emitter zones. At least one of the backside emitter zones includes: first sectors each having at least one first region of a second conductivity type, the first region arranged in contact with the second load terminal structure and having a smallest lateral extension of at most 50 ?m; and/or second sectors each having a second region of the second conductivity type arranged in contact with the second load terminal structure and having a smallest lateral extension of at least 50 ?m.
    Type: Application
    Filed: December 11, 2020
    Publication date: June 24, 2021
    Inventors: Roman Baburske, Moritz Hauf, Hans-Joachim Schulze, Holger Schulze, Benedikt Stoib