Patents by Inventor Moriyasu Nagae

Moriyasu Nagae has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9896748
    Abstract: A steel composition and method from making a dual phase steel therefrom. The dual phase steel may have carbon of about 0.05% by weight to about 0.12 wt %; niobium of about 0.005 wt % to about 0.03 wt %; titanium of about 0.005 wt % to about 0.02 wt %; nitrogen of about 0.001 wt % to about 0.01 wt %; silicon of about 0.01 wt % to about 0.5 wt %; manganese of about 0.5 wt % to about 2.0 wt %; and a total of molybdenum, chromium, vanadium and copper less than about 0.15 wt %. The steel may have a first phase consisting of ferrite and a second phase having one or more of carbide, pearlite, martensite, lower bainite, granular bainite, upper bainite, and degenerate upper bainite. A solute carbon content in the first phase may be about 0.01 wt % or less.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: February 20, 2018
    Assignee: Exxon Mobil Upstream Research Company
    Inventors: Jayoung Koo, Narasimha-Rao V. Bangaru, Swarupa Soma Bangaru, Hyun-Woo Jin, Adnan Ozekcin, Raghavan Ayer, Douglas P. Fairchild, Danny L. Beeson, Douglas S. Hoyt, James B. LeBleu, Jr., Shigeru Endo, Mitsuhiro Okatsu, Shinichi Kakihara, Moriyasu Nagae
  • Publication number: 20120125490
    Abstract: A steel composition and method from making a dual phase steel therefrom. The dual phase steel may have carbon of about 0.05% by weight to about 0.12 wt %; niobium of about 0.005 wt % to about 0.03 wt %; titanium of about 0.005 wt % to about 0.02 wt %; nitrogen of about 0.001 wt % to about 0.01 wt %; silicon of about 0.01 wt % to about 0.5 wt %; manganese of about 0.5 wt % to about 2.0 wt %; and a total of molybdenum, chromium, vanadium and copper less than about 0.15 wt %. The steel may have a first phase consisting of ferrite and a second phase having one or more of carbide, pearlite, martensite, lower bainite, granular bainite, upper bainite, and degenerate upper bainite. A solute carbon content in the first phase may be about 0.01 wt % or less.
    Type: Application
    Filed: January 30, 2012
    Publication date: May 24, 2012
    Inventors: Jayoung Koo, Swarupa Bangaru, Hyun-Woo Jin, Adnan Ozekcin, Raghavan Ayer, Douglas P. Fairchild, Danny L. Beeson, Douglas S. Hoyt, James B. LeBleu, JR., Shigeru Endo, Mitsuhiro Okatsu, Shinichi Kakihara, Moriyasu Nagae
  • Publication number: 20090301613
    Abstract: A steel composition and method from making a dual phase steel therefrom. The dual phase steel may have carbon of about 0.05% by weight to about 0.12 wt %; niobium of about 0.005 wt % to about 0.03 wt %; titanium of about 0.005 wt % to about 0.02 wt %; nitrogen of about 0.001 wt % to about 0.01 wt %; silicon of about 0.01 wt % to about 0.5 wt %; manganese of about 0.5 wt % to about 2.0 wt %; and a total of molybdenum, chromium, vanadium and copper less than about 0.15 wt %. The steel may have a first phase consisting of ferrite and a second phase having one or more of carbide, pearlite, martensite, lower bainite, granular bainite, upper bainite, and degenerate upper bainite. A solute carbon content in the first phase may be about 0.01 wt % or less.
    Type: Application
    Filed: April 6, 2009
    Publication date: December 10, 2009
    Inventors: Jayoung Koo, Swarupa Soma Bangaru, Hyun-Woo Jin, Adnan Ozekcin, Raghavan Ayer, Douglas P. Fairchild, Danny L. Beeson, Douglas S. Hoyt, James B. LeBleu, JR., Shigeru Endo, Mitsuhiro Okatsu, Shinichi Kakihara, Moriyasu Nagae
  • Patent number: 5397654
    Abstract: An abrasion-resistant welded steel pipe having a base plate and a weld metal: consists essentially of 0.05 to 0.2 wt. % C, 0.5 to 2 wt. % Si, 0.5 to 2.5 wt. % Mn, 0.02 to 2 wt. % Al, the balance being Fe and inevitable impurities; and the steel pipe has a Vickers hardness of at least 200. The abrasion-resistant welded steel pipe can further contain at least one element selected from the group consisting of 0.05 to 1 wt. % Cu, 0.05 to 2 wt. % Ni, 0.05 to 2 wt. % Cr, 0.05 to 1 wt. % Mo, 0.005 to 0.1 wt. % Nb, 0.005 to 0.1 wt. % V, 0.005 to 0.1 wt. % Ti, 0.0003 to 0.002 wt. % B.
    Type: Grant
    Filed: October 22, 1993
    Date of Patent: March 14, 1995
    Assignee: NKK Corporation
    Inventors: Shigeru Endo, Moriyasu Nagae, Osamu Hirano, Kazuyoshi Ume
  • Patent number: 5300751
    Abstract: Disclosed is a gas-shield arc welding method in which chemical components of base material and weld material (gas-shield arc welding wire), chemical component ranges of weld metal based on the base material and the weld material, especially, difference (.DELTA.(Cu+Ni), .DELTA.Mo) of Cu, Ni and Mo between the weld metal and the base material, and welding conditions are limited for the purpose of improvement preferential corrosion resistance, toughness and crack resistance of the weld metal in circumferential welding of a pipe exposed into a corrosion environment including CO.sub.2.
    Type: Grant
    Filed: August 25, 1992
    Date of Patent: April 5, 1994
    Assignees: NKK Corporation, Kobe Steel, Ltd.
    Inventors: Shigeru Endo, Moriyasu Nagae, Motokiyo Itoh, Toshihiko Nakano, Masato Konishi
  • Patent number: 5272305
    Abstract: Chemical compositions of a base metal and a high cellulose type welding electrode are regulated within predetermined ranges, so that the chemical composition of the weld metal obtained from the welding can be regulated within a predetermined range. Particularly, with respect to the weld metal, the Mo content (Mo)1 in the weld metal and the Mo content (Mo)2 in the base metal are regulated such that the difference between the both contents .DELTA.Mo (=(Mo)1-(Mo)2) is 0.03% or more, and PCM is 0.30% or less, where PCM is defined as follows: PCM=(C)+(Si)/30+(Mn)/20+(Cu)/20+(Ni)/60+(Cr)/20+(Mo)/15+(V)/10+5(B). Here, (M) denotes a content (weight %) of a component M in the weld metal.On the other hand, a coating flux of the high cellulose type coated electrode contains relative to the total amount of the coating flux, 0.1 to 7.0% of MgO, 7 to 25% of iron oxides (in FeO equivalent), 8 to 19% of TiO.sub.2, 10 to 30% of SiO.sub.2 and 5 to 27% of Mn, and a core wire and/or the coating flux includes 0.06 to 1.
    Type: Grant
    Filed: August 28, 1992
    Date of Patent: December 21, 1993
    Assignees: Kabushiki Kaisha Kobe Seiko Sho, NKK Corporation
    Inventors: Shigeru Endo, Moriyasu Nagae, Motokiyo Itoh, Takeshi Sugino, Shouzou Naruse
  • Patent number: 5116571
    Abstract: A chromium heat-resistant steel excellent in toughness and having a high cracking resistance and a high creep strength when said steel is utilized to form a welded joint, said steel consisting essentially of:______________________________________ carbon: from 0.04 to 0.09 wt. %, silicon: from 0.01 to 0.50 wt. %, manganese: from 0.25 to 1.50 wt. %, chromium: from 7.0 to 9.2 wt. %, molybdenum: from 0.50 to 1.50 wt. %, soluble aluminum: from 0.005 to 0.060 wt. %, nitrogen: from 0.001 to 0.060 wt. %, ______________________________________where, the total amount of nitrogen and carbon being up to 0.13 wt. %, at least one element selected from the group consisting of: ______________________________________ vanadium: from 0.01 to 0.30 wt. %, and niobium: from 0.005 to 0.200 wt. %, ______________________________________where, the total amount of vanadium and 1.5 times niobium being up to 0.30 wt. %, and the balance being iron and incidental impurities; and the amount of ferrite as represented by the ferrite number (.
    Type: Grant
    Filed: July 12, 1991
    Date of Patent: May 26, 1992
    Assignee: Nippon Kokan Kabushiki Kaisha
    Inventors: Nakatsugu Abe, Haruo Suzuki, Hiroaki Tsukamoto, Seishi Tsuyama, Moriyasu Nagae