Patents by Inventor Moses Alexander Fridman

Moses Alexander Fridman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10821948
    Abstract: A vehicle includes a user-actuatable switch and a controller. When the switch is actuated, the controller is adapted to effect a regenerative braking command to actuate a regenerative brake system when a vehicle speed is above a threshold speed, and to effect a parking brake command to actuate an electric park brake when the vehicle speed is less than or equal to the threshold speed.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: November 3, 2020
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Moses Alexander Fridman, Kevin Sallee, Dale Scott Crombez
  • Publication number: 20190135249
    Abstract: A vehicle includes a user-actuatable switch and a controller. When the switch is actuated, the controller is adapted to effect a regenerative braking command to actuate a regenerative brake system when a vehicle speed is above a threshold speed, and to effect a parking brake command to actuate an electric park brake when the vehicle speed is less than or equal to the threshold speed.
    Type: Application
    Filed: November 9, 2017
    Publication date: May 9, 2019
    Inventors: Moses Alexander Fridman, Kevin Sallee, Dale Scott Crombez
  • Patent number: 10207711
    Abstract: Methods for controlling vacuum within a brake booster by modifying powertrain operation include determining an intake manifold vacuum in response to actuation of a brake pedal. Increasing the intake manifold vacuum if the brake booster vacuum is less than a desired brake booster vacuum. In some embodiments, the transmission is downshifted to increase engine speed and intake manifold vacuum.
    Type: Grant
    Filed: January 16, 2017
    Date of Patent: February 19, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Douglas Raymond Martin, Dale Scott Crombez, Moses Alexander Fridman
  • Patent number: 9821781
    Abstract: Methods and apparatus to control braking of a vehicle during low deceleration operations are disclosed. A disclosed apparatus includes a controller configured to determine a deceleration of a vehicle, compare the deceleration to a threshold, and modulate, at a predetermined frequency, a brake pressure of the vehicle in response to the deceleration being below the threshold.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: November 21, 2017
    Assignee: Ford Global Technologies, LLC
    Inventors: Yuri Anatoly Karpenko, Todd Anthony Brittingham, Moses Alexander Fridman, Peter Kowalow, Ravi Lanka, Jinkoo Lee, Zachary Konchan
  • Publication number: 20170120920
    Abstract: Methods for controlling vacuum within a brake booster by modifying powertrain operation include determining an intake manifold vacuum in response to actuation of a brake pedal. Increasing the intake manifold vacuum if the brake booster vacuum is less than a desired brake booster vacuum. In some embodiments, the transmission is downshifted to increase engine speed and intake manifold vacuum.
    Type: Application
    Filed: January 16, 2017
    Publication date: May 4, 2017
    Inventors: Douglas Raymond MARTIN, Dale Scott CROMBEZ, Moses Alexander FRIDMAN
  • Patent number: 9573576
    Abstract: Methods for controlling vacuum within a brake booster by modifying powertrain operation include determining an intake manifold vacuum in response to actuation of a brake pedal. Increasing the intake manifold vacuum if the brake booster vacuum is less than a desired brake booster vacuum. In some embodiments, the transmission is downshifted to increase engine speed and intake manifold vacuum. In other embodiments, engine torque is reduced to increase intake manifold vacuum and the torque of the electric machine is increased to maintain a constant output torque.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: February 21, 2017
    Assignee: Ford Global Technologies, LLC
    Inventors: Douglas Raymond Martin, Dale Scott Crombez, Moses Alexander Fridman
  • Patent number: 9010116
    Abstract: A vacuum source arbitration system is disclosed. In one example, vacuum is supplied to a vacuum reservoir via an ejector during a first condition, and vacuum is supplied to the vacuum reservoir via an engine intake manifold during a second condition. The approach may provide a desired level of vacuum in a reservoir while reducing engine fuel consumption.
    Type: Grant
    Filed: January 20, 2014
    Date of Patent: April 21, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Ralph Wayne Cunningham, Moses Alexander Fridman, Todd Anthony Rumpsa, Mansour Beshay, Clifford E. Maki, Ross Dykstra Pursifull
  • Patent number: 8944528
    Abstract: Methods and systems are provided to reduce a hard brake pedal feel. A brake control variable is adjusted in anticipation of a hard pedal condition to increase hydraulic brake line pressure and maintain a normal pedal feel. A pedal force is inferred from brake line pressure relative to brake booster vacuum.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: February 3, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Ross Dykstra Pursifull, Moses Alexander Fridman, Ralph Wayne Cunningham
  • Publication number: 20150000634
    Abstract: Methods for controlling vacuum within a brake booster by modifying powertrain operation include determining an intake manifold vacuum in response to actuation of a brake pedal. Increasing the intake manifold vacuum if the brake booster vacuum is less than a desired brake booster vacuum. In some embodiments, the transmission is downshifted to increase engine speed and intake manifold vacuum. In other embodiments, engine torque is reduced to increase intake manifold vacuum and the torque of the electric machine is increased to maintain a constant output torque.
    Type: Application
    Filed: September 15, 2014
    Publication date: January 1, 2015
    Inventors: Douglas Raymond MARTIN, Dale Scott CROMBEZ, Moses Alexander FRIDMAN
  • Publication number: 20140130775
    Abstract: A vacuum source arbitration system is disclosed. In one example, vacuum is supplied to a vacuum reservoir via an ejector during a first condition, and vacuum is supplied to the vacuum reservoir via an engine intake manifold during a second condition. The approach may provide a desired level of vacuum in a reservoir while reducing engine fuel consumption.
    Type: Application
    Filed: January 20, 2014
    Publication date: May 15, 2014
    Applicant: Ford Global Technologies, LLC
    Inventors: Ralph Wayne Cunningham, Moses Alexander Fridman, Todd Anthony Rumpsa, Mansour Beshay, Clifford E. Maki, Ross Dykstra Pursifull
  • Publication number: 20140102086
    Abstract: Methods and systems are provided to reduce a hard brake pedal feel. A brake control variable is adjusted in anticipation of a hard pedal condition to increase hydraulic brake line pressure and maintain a normal pedal feel. A pedal force is inferred from brake line pressure relative to brake booster vacuum.
    Type: Application
    Filed: December 17, 2013
    Publication date: April 17, 2014
    Applicant: Ford Global Technologies, LLC
    Inventors: Ross Dykstra Pursifull, Moses Alexander Fridman, Ralph Wayne Cunningham
  • Patent number: 8683800
    Abstract: A vacuum source arbitration system is disclosed. In one example, vacuum is supplied to a vacuum reservoir via an ejector during a first condition, and vacuum is supplied to the vacuum reservoir via an engine intake manifold during a second condition. The approach may provide a desired level of vacuum in a reservoir while reducing engine fuel consumption.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: April 1, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Ralph Wayne Cunningham, Moses Alexander Fridman, Todd Anthony Rumpsa, Mansour Beshay, Cliff Maki, Ross Dykstra Pursifull
  • Patent number: 8641152
    Abstract: Methods and systems are provided to reduce a hard brake pedal feel. A brake control variable is adjusted in anticipation of a hard pedal condition to increase hydraulic brake line pressure and maintain a normal pedal feel. A pedal force is inferred from brake line pressure relative to brake booster vacuum.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: February 4, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Ross Dykstra Pursifull, Moses Alexander Fridman, Ralph Wayne Cunningham
  • Patent number: 8554419
    Abstract: In the event that the brake pedal and accelerator pedal are depressed simultaneously, powertrain output is decreased monotonically with brake pedal input. In a lower range of brake pedal input, the brakes are prevented from actuating or are allowed to actuate minimally. In a higher range of pedal input, the powertrain output continues to be decreased and the brakes are allowed to actuate. In yet another higher range of pedal input, the powertrain output is substantially decreased such that a minimal powertrain output is achieved. The powertrain may include an internal combustion engine and/or an electric motor. The brake pedal input is determined based on a sensor associated with the brake pedal, the brake booster, or the master cylinder.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: October 8, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: Dale Scott Crombez, Moses Alexander Fridman, Douglas Raymond Martin
  • Publication number: 20130113270
    Abstract: Methods and systems are provided to reduce a hard brake pedal feel. A brake control variable is adjusted in anticipation of a hard pedal condition to increase hydraulic brake line pressure and maintain a normal pedal feel. A pedal force is inferred from brake line pressure relative to brake booster vacuum.
    Type: Application
    Filed: November 7, 2011
    Publication date: May 9, 2013
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Ross Dykstra Pursifull, Moses Alexander Fridman, Ralph Wayne Cunningham
  • Publication number: 20120237367
    Abstract: A vacuum source arbitration system is disclosed. In one example, vacuum is supplied to a vacuum reservoir via an ejector during a first condition, and vacuum is supplied to the vacuum reservoir via an engine intake manifold during a second condition. The approach may provide a desired level of vacuum in a reservoir while reducing engine fuel consumption.
    Type: Application
    Filed: March 17, 2011
    Publication date: September 20, 2012
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC.
    Inventors: Ralph Wayne Cunningham, Moses Alexander Fridman, Todd Anthony Rumpsa, Mansour Beshay, Cliff Maki, Ross Dykstra Pursifull
  • Publication number: 20120116656
    Abstract: Power brakes are typically vacuum assisted, with the vacuum provided from the intake manifold. If the engine is commanded to operate for a long period at a condition with low intake manifold vacuum, the vacuum within the brake booster may drop to a level which is marginal or insufficient for a present or subsequent braking operation. To ensure sufficient vacuum in the intake manifold to provide to the brake booster, the engine may be commanded to operate at a condition to increase intake manifold vacuum by one of: adjusting cam timing, increasing engine speed, and increasing EGR. In the case of a stop-start vehicle, the engine speed is increased from zero to a condition that provides the desired vacuum.
    Type: Application
    Filed: November 8, 2010
    Publication date: May 10, 2012
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Douglas Raymond Martin, Dale Scott Crombez, Moses Alexander Fridman
  • Publication number: 20110295468
    Abstract: In the event that the brake pedal and accelerator pedal are depressed simultaneously, powertrain output is decreased monotonically with brake pedal input. In a lower range of brake pedal input, the brakes are prevented from actuating or are allowed to actuate minimally. In a higher range of pedal input, the powertrain output continues to be decreased and the brakes are allowed to actuate. In yet another higher range of pedal input, the powertrain output is substantially decreased such that a minimal powertrain output is achieved. The powertrain may include an internal combustion engine and/or an electric motor. The brake pedal input is determined based on a sensor associated with the brake pedal, the brake booster, or the master cylinder.
    Type: Application
    Filed: May 28, 2010
    Publication date: December 1, 2011
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Dale Scott Crombez, Moses Alexander Fridman, Douglas Raymond Martin