Patents by Inventor Moshe Amit

Moshe Amit has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955363
    Abstract: A bonding fixture. In some embodiments, the fixture includes: a plate for supporting a central region of the wafer, the central region including 80% of the area of the wafer; and a frame for supporting: the edge of the wafer, and the edge of the plate, the frame having: a first vacuum passage, for pulling the wafer against an upper surface of the frame, and a second vacuum passage, for pulling the plate against the frame.
    Type: Grant
    Filed: May 11, 2022
    Date of Patent: April 9, 2024
    Assignee: Rockley Photonics Limited
    Inventors: Moshe Amit, Chia-Te Chou, Arvind Jaikumar
  • Publication number: 20220367235
    Abstract: A bonding fixture. In some embodiments, the fixture includes: a plate for supporting a central region of the wafer, the central region including 80% of the area of the wafer; and a frame for supporting: the edge of the wafer, and the edge of the plate, the frame having: a first vacuum passage, for pulling the wafer against an upper surface of the frame, and a second vacuum passage, for pulling the plate against the frame.
    Type: Application
    Filed: May 11, 2022
    Publication date: November 17, 2022
    Inventors: Moshe AMIT, Chia-Te CHOU, Arvind JAIKUMAR
  • Patent number: 10203455
    Abstract: An optical transmitter including first, second, third and fourth signal generators configured to transmit first, second, third and fourth optical signals, a first filter configured to combine the first optical signal with the second optical signal to form a first multi-channel signal, a second filter configured to combine the third optical signal with the first multi-channel signal to form a second multi-channel signal, and a third filter configured to combine the fourth optical signal with the second multi-channel signal to form a third multi-channel signal. The first optical signal and the third optical signal have parallel optical axes, as do the second optical signal and the fourth optical signal. The second and fourth optical signals are at an angle of from 5° to 40° with respect to the first and third optical signals and are generally propagated in an opposite direction from the first and third optical signals.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: February 12, 2019
    Assignee: Source Photonics (Chengdu) Co., Ltd.
    Inventor: Moshe Amit
  • Patent number: 10168500
    Abstract: An optical subassembly, optical or optoelectronic receivers and transceivers including the same, and methods of making and using the same are disclosed. The optical subassembly includes a mirror configured to reflect an incoming optical signal at a first predetermined angle, a lens configured to receive the incoming optical signal from the mirror and focus the incoming optical signal onto a target, and an optical mount comprising at least one first surface configured to support the mirror, at least one second surface configured to support and/or secure the lens at a second predetermined angle, and a structural block configured to position and/or arrange (i) the at least one first surface at a third predetermined angle related to the first predetermined angle and (ii) the at least one second surface at the first and/or second predetermined angle. The first and/or second predetermined angle(s) are adapted to reduce a reflectance of the incoming optical signal.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: January 1, 2019
    Assignee: Source Photonics (Chengdu) Co., Ltd.
    Inventor: Moshe Amit
  • Publication number: 20180196209
    Abstract: An optical subassembly, optical or optoelectronic receivers and transceivers including the same, and methods of making and using the same are disclosed. The optical subassembly includes a mirror configured to reflect an incoming optical signal at a first predetermined angle, a lens configured to receive the incoming optical signal from the mirror and focus the incoming optical signal onto a target, and an optical mount comprising at least one first surface configured to support the mirror, at least one second surface configured to support and/or secure the lens at a second predetermined angle, and a structural block configured to position and/or arrange (i) the at least one first surface at a third predetermined angle related to the first predetermined angle and (ii) the at least one second surface at the first and/or second predetermined angle. The first and/or second predetermined angle(s) are adapted to reduce a reflectance of the incoming optical signal.
    Type: Application
    Filed: January 6, 2017
    Publication date: July 12, 2018
    Applicant: Source Photonics (Chengdu) Company Limited
    Inventor: Moshe AMIT
  • Publication number: 20180164515
    Abstract: An optical transmitter including first, second, third and fourth signal generators configured to transmit first, second, third and fourth optical signals, a first filter configured to combine the first optical signal with the second optical signal to form a first multi-channel signal, a second filter configured to combine the third optical signal with the first multi-channel signal to form a second multi-channel signal, and a third filter configured to combine the fourth optical signal with the second multi-channel signal to form a third multi-channel signal. The first optical signal and the third optical signal have parallel optical axes, as do the second optical signal and the fourth optical signal. The second and fourth optical signals are at an angle of from 5° to 40° with respect to the first and third optical signals and are generally propagated in an opposite direction from the first and third optical signals.
    Type: Application
    Filed: December 13, 2016
    Publication date: June 14, 2018
    Inventor: Moshe AMIT
  • Patent number: 9829638
    Abstract: An optical multiplexer and methods of making and calibrating the same are disclosed. A method of aligning components in a multichannel optical/optoelectronic transmitter includes passively fixing a plurality of light emitters in place on a substrate; adjusting positions of a first lens passing light from a first light emitter and an optical signal transmission medium receiving the light from the first light emitter until a far field spot of the light from the first light emitter is at or near an end of the transmission medium; fixing one or more optical subassemblies on the substrate; and adjusting positions of the optical subassembly(ies) to align light from the remaining light emitters with the far field spot. Some embodiments include multiple optical subassemblies, each including a lens and a filter. Other embodiments include one optical subassembly including a mirror and a beam combiner.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: November 28, 2017
    Assignee: Source Photonics, Inc.
    Inventors: Moshe Amit, Mark Heimbuch
  • Publication number: 20170269304
    Abstract: An optical multiplexer and methods of making and calibrating the same are disclosed. A method of aligning components in a multichannel optical/optoelectronic transmitter includes passively fixing a plurality of light emitters in place on a substrate; adjusting positions of a first lens passing light from a first light emitter and an optical signal transmission medium receiving the light from the first light emitter until a far field spot of the light from the first light emitter is at or near an end of the transmission medium; fixing one or more optical subassemblies on the substrate; and adjusting positions of the optical subassembly(ies) to align light from the remaining light emitters with the far field spot. Some embodiments include multiple optical subassemblies, each including a lens and a filter. Other embodiments include one optical subassembly including a mirror and a beam combiner.
    Type: Application
    Filed: June 7, 2017
    Publication date: September 21, 2017
    Inventors: Moshe AMIT, Mark HEIMBUCH
  • Patent number: 9720179
    Abstract: An optical multiplexer and methods of making and calibrating the same are disclosed. A method of aligning components in a multichannel optical/optoelectronic transmitter includes passively fixing a plurality of light emitters in place on a substrate; adjusting positions of a first lens passing light from a first light emitter and an optical signal transmission medium receiving the light from the first light emitter until a far field spot of the light from the first light emitter is at or near an end of the transmission medium; fixing one or more optical subassemblies on the substrate; and adjusting positions of the optical subassembly(ies) to align light from the remaining light emitters with the far field spot. Some embodiments include multiple optical subassemblies, each including a lens and a filter. Other embodiments include one optical subassembly including a mirror and a beam combiner.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: August 1, 2017
    Assignee: Source Photonics, Inc.
    Inventors: Moshe Amit, Mark Heimbuch
  • Patent number: 9568680
    Abstract: Methods for manufacturing and using an optical or optoelectronic device are disclosed. The optical or optoelectronic device and related methods may be useful as an optical or optoelectronic transceiver or for the processing of optical signals. The optical or optoelectronic device generally comprises a light-transmitting medium configured to transmit a first light beam; a light-receiving unit configured to receive and process a focused, reflected light beam; a first mirror or beam splitter configured to reflect at least a first portion of the transmitted light beam away from the light-receiving unit; a lens configured to focus the reflected light beam; and a second mirror configured to reflect the focused, reflected light beam towards the light-receiving unit.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: February 14, 2017
    Assignee: Source Photonics, Inc.
    Inventor: Moshe Amit
  • Publication number: 20170031103
    Abstract: Methods for manufacturing and using an optical or optoelectronic device are disclosed. The optical or optoelectronic device and related methods may be useful as an optical or optoelectronic transceiver or for the processing of optical signals. The optical or optoelectronic device generally comprises a light-transmitting medium configured to transmit a first light beam; a light-receiving unit configured to receive and process a focused, reflected light beam; a first mirror or beam splitter configured to reflect at least a first portion of the transmitted light beam away from the light-receiving unit; a lens configured to focus the reflected light beam; and a second mirror configured to reflect the focused, reflected light beam towards the light-receiving unit.
    Type: Application
    Filed: November 12, 2015
    Publication date: February 2, 2017
    Applicant: SOURCE PHOTONICS, INC.
    Inventor: Moshe AMIT
  • Publication number: 20160131843
    Abstract: An optical multiplexer and methods of making and calibrating the same are disclosed. A method of aligning components in a multichannel optical/optoelectronic transmitter includes passively fixing a plurality of light emitters in place on a substrate; adjusting positions of a first lens passing light from a first light emitter and an optical signal transmission medium receiving the light from the first light emitter until a far field spot of the light from the first light emitter is at or near an end of the transmission medium; fixing one or more optical subassemblies on the substrate; and adjusting positions of the optical subassembly(ies) to align light from the remaining light emitters with the far field spot. Some embodiments include multiple optical subassemblies, each including a lens and a filter. Other embodiments include one optical subassembly including a mirror and a beam combiner.
    Type: Application
    Filed: July 29, 2013
    Publication date: May 12, 2016
    Inventors: Moshe AMIT, Mark HEIMBUCH
  • Patent number: 9213156
    Abstract: Methods for manufacturing and using an optical or optoelectronic device are disclosed. The optical or optoelectronic device and related methods may be useful as an optical or optoelectronic transceiver or for the processing of optical signals. The optical or optoelectronic device generally comprises a light-transmitting medium configured to transmit a first light beam; a light-receiving unit configured to receive and process a focused, reflected light beam; a first mirror or beam splitter configured to reflect at least a first portion of the transmitted light beam away from the light-receiving unit; a lens configured to focus the reflected light beam; and a second mirror configured to reflect the focused, reflected light beam towards the light-receiving unit.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: December 15, 2015
    Assignee: Source Photonics, Inc.
    Inventor: Moshe Amit
  • Patent number: 9164247
    Abstract: Methods and apparatuses for reducing the sensitivity of an optical signal to polarization. The method generally includes (i) reflecting the optical signal from a first mirror at a first angle relative to the optical signal to a second mirror at a second angle, and (ii) further reflecting the reflected optical signal from the second mirror to a receiver. The apparatus generally comprises (i) a first mirror at a first angle relative to an incident optical signal and configured to reflect the incident optical signal, (ii) a second mirror at a second angle configured to further reflect the reflected optical signal to a first receiver, and (iii) a lens configured to focus and/or collimate the optical signal or the reflected optical signal. The first angle is configured to reduce polarization of the reflected optical signal, thereby maximizing the intensity or power of the optical signal.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: October 20, 2015
    Assignee: Source Photonics, Inc.
    Inventor: Moshe Amit
  • Publication number: 20130051024
    Abstract: Methods for manufacturing and using an optical and/or optoelectronic device are disclosed. The optical or optoelectronic device and related methods may be useful for the transmitting of optical signals. The optical and/or optoelectronic device generally comprises (i) a laser diode on a mounting assembly, the laser diode providing an optical output signal, (ii) an optical communication medium configured to receive the optical output signal, (iii) a lens holder on the mounting assembly, (iv) and a lens in the lens holder, wherein the lens holder is in a position that aligns the lens with the laser diode and the optical communication medium.
    Type: Application
    Filed: August 31, 2011
    Publication date: February 28, 2013
    Inventor: Moshe AMIT
  • Publication number: 20130044977
    Abstract: Methods for manufacturing and using an optical or optoelectronic device are disclosed. The optical or optoelectronic device and related methods may be useful as an optical or optoelectronic transceiver or for the processing of optical signals. The optical or optoelectronic device generally comprises a light-transmitting medium configured to transmit a first light beam; a light-receiving unit configured to receive and process a focused, reflected light beam; a first mirror or beam splitter configured to reflect at least a first portion of the transmitted light beam away from the light-receiving unit; a lens configured to focus the reflected light beam; and a second mirror configured to reflect the focused, reflected light beam towards the light-receiving unit.
    Type: Application
    Filed: August 17, 2011
    Publication date: February 21, 2013
    Inventor: Moshe AMIT
  • Publication number: 20130028611
    Abstract: Methods and apparatuses for reducing the sensitivity of an optical signal to polarization. The method generally includes (i) reflecting the optical signal from a first mirror at a first angle relative to the optical signal to a second mirror at a second angle, and (ii) further reflecting the reflected optical signal from the second mirror to a receiver. The apparatus generally comprises (i) a first mirror at a first angle relative to an incident optical signal and configured to reflect the incident optical signal, (ii) a second mirror at a second angle configured to further reflect the reflected optical signal to a first receiver, and (iii) a lens configured to focus and/or collimate the optical signal or the reflected optical signal. The first angle is configured to reduce polarization of the reflected optical signal, thereby maximizing the intensity or power of the optical signal.
    Type: Application
    Filed: July 28, 2011
    Publication date: January 31, 2013
    Inventor: Moshe Amit