Patents by Inventor Motoaki Kataoka

Motoaki Kataoka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050267648
    Abstract: In a state where a driver sees a region near a vehicle, a finally-requested output-shaft torque is set so that a response is hastened in a deceleration and slowed in an acceleration. Thereby, a vehicle takes a forward descending position in which the front end of the vehicle is descending, which gives a driver a sense of deceleration or a sense of turning. Further, this position causes a front wheel load acting on the ground to increase and a rear wheel load acting on the ground to decrease, in comparison to a normal position. This thereby makes it easier for the vehicle to decelerate when practically decelerating or turning, and further enables turning to slightly over-steer. A resultant vehicular kinetic characteristic becomes comparable with a sense that is expected by the driver.
    Type: Application
    Filed: May 26, 2005
    Publication date: December 1, 2005
    Applicant: DENSO Corporation
    Inventors: Mamoru Mabuchi, Motoaki Kataoka, Hiromichi Tanaka, Mamoru Sawada
  • Patent number: 6957138
    Abstract: A vehicle travel control apparatus makes an own vehicle automatically follow a vehicle in front by setting a target acceleration/deceleration G0 using travel data expressing behavior of the vehicle, travel environment, driving operations and others. Here, during vehicle travel based on driver control, multiple travel data are sampled a predetermined number of times to perform multiple regression analysis on that sampled data. Preference data expressing preferences of the driver (multiple regression coefficients) are thereby obtained, and target acceleration/deceleration computation data are updated using these multiple regression coefficients. As a result, it is possible to control the behavior of the vehicle in accordance with preferences of the driver during automatic following control execution.
    Type: Grant
    Filed: November 13, 2002
    Date of Patent: October 18, 2005
    Assignee: DENSO Corporation
    Inventors: Toshiyuki Kondo, Mamoru Sawada, Motoaki Kataoka
  • Publication number: 20050143896
    Abstract: A vehicle integration control system includes a manager controller and a driving system controller. The manager controller sets a target generation driving force guide value for a driving force outputted from a driving system of a vehicle. The driving system controller controls the driving force on the basis of the target generation driving force guide value. The manager controller includes a driver request value setter and a driving force corrector. The driver request value setter sets a driver request generation driving force value corresponding to the driving force outputted from the driving system on the basis of a driver's input. The driving force corrector corrects the driver request generation driving force value on the basis of a predetermined program to restrain vibration generated in the vehicle when the driving force outputted from the driving system.
    Type: Application
    Filed: December 21, 2004
    Publication date: June 30, 2005
    Inventors: Mamoru Sawada, Toshiki Matsumoto, Tsutomu Tashiro, Mamoru Mabuchi, Takehito Fujii, Motoaki Kataoka
  • Publication number: 20050049761
    Abstract: An object of the present invention is to execute an optimum control of vibrations due to a driver's operation of an accelerator pedal, steering wheel and brake pedal. The operation instructions are inputted into a vibration calculating means (kinetic model) comprising a vehicle body model, suspension model and tire model. Conventional kinetic model controlled the suspension in order to suppress the vehicle body vibration. However, in the kinetic model of the present invention, the tire vibration due to a change in the engine output is first absorbed by the suspension, whereby a residual vibration which was not be absorbed yet by the suspension is transferred to the vehicle body. The operation inputs are compensated by the three feed-back loops between the outputs of the above-mentioned three portions and input of the tire portion, giving the highest priority on the vehicle body model.
    Type: Application
    Filed: November 10, 2003
    Publication date: March 3, 2005
    Inventors: Motoaki Kataoka, Toshiki Matsumoto, Tsutomu Tashiro, Mamoru Mabuchi, Mamoru Sawada
  • Publication number: 20050027417
    Abstract: In a power steering apparatus employing an EPS (electrical power steering) motor coupled to a steering mechanism, when vibration of the steering mechanism is produced by twisting of tire rubber due to changes in steering angle, resultant pulsation of the drive current of the EPS motor are suppressed by adding to the drive current a current that is of equal frequency and opposite phase to the pulsation. Vibration of the EPS motor shaft, and resultant vibration of the steering wheel and vehicle body, are thereby effectively suppressed.
    Type: Application
    Filed: July 13, 2004
    Publication date: February 3, 2005
    Inventors: Mamoru Sawada, Toshiki Matsumoto, Tsutomu Tashiro, Mamoru Mabuchi, Takehito Fujii, Motoaki Kataoka
  • Publication number: 20040262067
    Abstract: In a driving condition control system, a sensing unit senses a first physical quantity indicative of a rotation of the first rotatable axle assembly and a second physical quantity indicative of a rotation of the second rotatable axle assembly. A determining unit compares the first and second physical quantities of the rotations of the first and second rotational axle assemblies and determines whether a driving condition of the vehicle is unstable according to the compared result. As a result, the unstable condition of the vehicle can be rapidly detected without detecting a yaw moment of the vehicle.
    Type: Application
    Filed: June 17, 2004
    Publication date: December 30, 2004
    Inventors: Mamoru Sawada, Toshiki Matsumoto, Tsutomu Tashiro, Mamoru Mabuchi, Takehito Fujii, Motoaki Kataoka
  • Publication number: 20040259681
    Abstract: In a driving condition control system, a sensing unit is configured to sense a first physical quantity indicative of a rotation of the first rotatable axle assembly and a second physical quantity indicative of a rotation of the second rotatable axle assembly. A correcting unit is configured to correct the torque according to the sensed first and second physical quantities of the rotations of the first and second rotational axle assemblies. This allows the torque to be precisely obtained.
    Type: Application
    Filed: June 17, 2004
    Publication date: December 23, 2004
    Inventors: Mamoru Sawada, Toshiki Matsumoto, Tsutomu Tashiro, Mamoru Mabuchi, Takehito Fujii, Motoaki Kataoka
  • Patent number: 6704641
    Abstract: Automotive control system designed to control a plurality of controlled elements installed in the vehicle is provided. The control system includes control circuits and a manager circuit. The control circuits are designed to perform given control tasks using pre-defined controlled variables. The manager circuit is designed to determine a target value of a preselected output parameter of at least one of the controlled elements in the form of a second controlled variable different from one of the controlled variables employed in the control circuit for the one of the controlled elements. The control system also includes an adaptor designed to translate the second controlled variable indicative of the target value of the output parameter into a value of the corresponding controlled variable. This allows the control system to be constructed easily without redesigning typical controlled elements.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: March 9, 2004
    Assignee: Denso Corporation
    Inventors: Tsutomu Tashiro, Noboru Miyamoto, Takehito Fujii, Motoaki Kataoka, Yoshifumi Kato
  • Publication number: 20030093210
    Abstract: A vehicle travel control apparatus makes an own vehicle automatically follow a vehicle in front by setting a target acceleration/deceleration G0 using travel data expressing behavior of the vehicle, travel environment, driving operations and others. Here, during vehicle travel based on driver control, multiple travel data are sampled a predetermined number of times to perform multiple regression analysis on that sampled data. Preference data expressing preferences of the driver (multiple regression coefficients) are thereby obtained, and target acceleration/deceleration computation data are updated using these multiple regression coefficients. As a result, it is possible to control the behavior of the vehicle in accordance with preferences of the driver during automatic following control execution.
    Type: Application
    Filed: November 13, 2002
    Publication date: May 15, 2003
    Inventors: Toshiyuki Kondo, Mamoru Sawada, Motoaki Kataoka
  • Publication number: 20020038647
    Abstract: Automotive control system designed to control a plurality of controlled elements installed in the vehicle is provided. The control system includes control circuits and a manager circuit. The control circuits are designed to perform given control tasks using pre-defined controlled variables. The manager circuit is designed to determine a target value of a preselected output parameter of at least one of the controlled elements in the form of a second controlled variable different from one of the controlled variables employed in the control circuit for the one of the controlled elements. The control system also includes an adaptor designed to translate the second controlled variable indicative of the target value of the output parameter into a value of the corresponding controlled variable. This allows the control system to be constructed easily without redesigning typical controlled elements.
    Type: Application
    Filed: October 2, 2001
    Publication date: April 4, 2002
    Inventors: Tsutomu Tashiro, Noboru Miyamoto, Takehito Fujii, Motoaki Kataoka, Yoshifumi Kato
  • Patent number: 6335604
    Abstract: A power assist motor drive unit includes an H-bridge circuit, current detecting means, and current control means for carrying out a PI feed back control according to a difference between the absolute values of a command current value and a actual motor current, thereby controlling the H-bridge circuit. The current control means includes PI operation control means and compensation-term-operation means for resetting a integral compensation term to a suitable value when operation of the power assist motor is changed from one state to another.
    Type: Grant
    Filed: April 18, 2000
    Date of Patent: January 1, 2002
    Assignee: Denso Corporation
    Inventor: Motoaki Kataoka