Patents by Inventor Motoo Aoyama

Motoo Aoyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7997078
    Abstract: In a nuclear power plant, thermal power in a second operation cycle of a nuclear reactor is uprated from thermal power in a first operation cycle preceding the second operation cycle by at least one operation cycle. A proportion of steam extracted from a steam system and introduced to a feedwater heater, which is in particular extracted from an intermediate point and an outlet of a high pressure turbine, with respect to a flow rate of main steam, is reduced in the second operation cycle from that in the first operation cycle such that the temperature of feedwater discharged from the feedwater heater is lowered by 1° C. to 40° C. in the second operation cycle.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: August 16, 2011
    Assignee: Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Masao Chaki, Kazuaki Kitou, Motoo Aoyama, Masaya Ootsuka, Kouji Shiina
  • Publication number: 20110162364
    Abstract: In a nuclear power plant, thermal power in a second operation cycle of a nuclear reactor is uprated from thermal power in a first operation cycle preceding the second operation cycle by at least one operation cycle. A proportion of steam extracted from a steam system and introduced to a feedwater heater, which is in particular extracted from an intermediate point and an outlet of a high pressure turbine, with respect to a flow rate of main steam, is reduced in the second operation cycle from that in the first operation cycle such that the temperature of feedwater discharged from the feedwater heater is lowered by 1° C. to 40° C. in the second operation cycle.
    Type: Application
    Filed: March 11, 2011
    Publication date: July 7, 2011
    Inventors: Masao Chaki, Kazuaki Kitou, Motoo Aoyama, Masaya Ootsuka, Kouji Shiina
  • Publication number: 20110162363
    Abstract: In a nuclear power plant, thermal power in a second operation cycle of a nuclear reactor is uprated from thermal power in a first operation cycle preceding the second operation cycle by at least one operation cycle. A proportion of steam extracted from a steam system and introduced to a feedwater heater, which is in particular extracted from an intermediate point and an outlet of a high pressure turbine, with respect to a flow rate of main steam, is reduced in the second operation cycle from that in the first operation cycle such that the temperature of feedwater discharged from the feedwater heater is lowered by 1° C. to 40° C. in the second operation cycle.
    Type: Application
    Filed: March 11, 2011
    Publication date: July 7, 2011
    Inventors: Masao CHAKI, Kazuaki KITOU, Motoo AOYAMA, Masaya OOTSUKA, Kouji SHIINA
  • Patent number: 7970094
    Abstract: A nuclear power plant and method of operation for augmenting a second reactor thermal power output in a second operation cycle to a level larger than a first reactor thermal power output in the previous operation cycle. The plant is equipped, for example, with a reactor; a steam loop comprising high and low pressure turbines; a condenser for condensing steam discharged therefrom the low pressure turbine; a feedwater heater for heating feedwater supplied from the condenser; and a feedwater loop for leading feedwater discharged from the feedwater heater to the reactor. The operation method includes decreasing a ratio of extraction steam which is led to the feedwater heater from a steam loop in the second operation cycle.
    Type: Grant
    Filed: January 2, 2008
    Date of Patent: June 28, 2011
    Assignee: Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Kazuaki Kitou, Masao Chaki, Kouji Shiina, Motoo Aoyama, Masaya Ohtsuka, Masayuki Nagasawa, Minoru Okura, Seiji Nemoto, Yasuhiro Takahashi
  • Publication number: 20100170246
    Abstract: In a nuclear power plant, thermal power in a second operation cycle of a nuclear reactor is uprated from thermal power in a first operation cycle preceding the second operation cycle by at least one operation cycle. A proportion of steam extracted from a steam system and introduced to a feedwater heater, which is in particular extracted from an intermediate point and an outlet of a high pressure turbine, with respect to a flow rate of main steam, is reduced in the second operation cycle from that in the first operation cycle such that the temperature of feedwater discharged from the feedwater heater is lowered by 1° C. to 40° C. in the second operation cycle.
    Type: Application
    Filed: October 6, 2009
    Publication date: July 8, 2010
    Inventors: Masao CHAKI, Kazuaki Kitou, Motoo Aoyama, Masaya Ootsuka, Kouji Shiina
  • Publication number: 20100128833
    Abstract: A reactor core, comprising: an outermost region; a core region surrounded by said outermost region; a plurality of fuel support members, each of which is disposed at a lower end portion of said outermost region and said core region; and a plurality of fuel assemblies loaded in said outermost region and said core region and supported by said fuel support members, wherein a plurality of fuel assemblies disposed in said core region include a plurality of first fuel assemblies, each of which is inserted into a first coolant passage which is formed in said fuel support member and has a first resistor having an opening, and a plurality of second fuel assemblies, each of which is individually inserted into each of second coolant passage which is formed in said fuel support member and has a second resistor having an opening and a larger pressure loss than that of said first resistor; and, four fuel assemblies, each of which is adjacent to each of four lateral sides of each of a plurality of first fuel assemblies,
    Type: Application
    Filed: November 24, 2009
    Publication date: May 27, 2010
    Inventors: Takeshi Mitsuyasu, Motoo Aoyama, Kazuya Ishii, Masao Chaki
  • Patent number: 7614233
    Abstract: In a nuclear power plant, thermal power in a second operation cycle of a nuclear reactor is uprated from thermal power in a first operation cycle preceding the second operation cycle by at least one operation cycle. A proportion of steam extracted from a steam system and introduced to a feedwater heater, which is in particular extracted from an intermediate point and an outlet of a high pressure turbine, with respect to a flow rate of main steam, is reduced in the second operation cycle from that in the first operation cycle such that the temperature of feedwater discharged from the feedwater heater is lowered by 1° C. to 40° C. in the second operation cycle.
    Type: Grant
    Filed: January 27, 2006
    Date of Patent: November 10, 2009
    Assignee: Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Masao Chaki, Kazuaki Kitou, Motoo Aoyama, Masaya Ootsuka, Kouji Shiina
  • Publication number: 20090252282
    Abstract: A fuel assembly, comprising: a plurality of first fuel rods including uranium and not including a burnable poison; a plurality of second fuel rods including said uranium and said burnable poison; and a water rod; wherein said second fuel rods are placed at corners of an outermost layer of a fuel rod array; other second fuel rods are placed, in said outermost layer, adjacent to said second fuel rods placed at said corners; and other second fuel rods are placed adjacent to said water rod.
    Type: Application
    Filed: December 11, 2008
    Publication date: October 8, 2009
    Inventors: Takeshi MITSUYASU, Motoo Aoyama, Tetsushi Hino
  • Publication number: 20090141847
    Abstract: An method for operating a nuclear power generation plant, comprising the steps of: forming a plurality of control rod patterns by operating a plurality of control rods during a first period of one operation cycle of a reactor including said first period before a point of time when all control rods are completely withdrawn from a core of said reactor and a core flow rate reaches firstly a set core flow rate, and a second period after said point of time, controlling stepwise at least once a temperature of feed water supplied to said reactor based on a different set feed water temperature during a period included in said first period for operating said reactor with a formed same control rod pattern, and continuing feed water temperature control based on said set feed water temperature until said core flow rate reaches a set core flow rate set based on said set feed water temperature.
    Type: Application
    Filed: November 28, 2008
    Publication date: June 4, 2009
    Inventors: Tetsushi HINO, Masao CHAKI, Motoo AOYAMA, Takeshi MITSUYASU, Yoshihiko ISHII
  • Publication number: 20090041174
    Abstract: A reactor core, comprising: an outermost region; a core region surrounded by said outermost region; a plurality of fuel support members, each of which is disposed at a lower end portion of said outermost region and said core region; and a plurality of fuel assemblies loaded in said outermost region and said core region and supported by said fuel support members, wherein a plurality of fuel assemblies disposed in said core region include a plurality of first fuel assemblies, each of which is inserted into a first coolant passage which is formed in said fuel support member and has a first resistor having an opening, and a plurality of second fuel assemblies, each of which is individually inserted into each of second coolant passage which is formed in said fuel support member and has a second resistor having an opening and a larger pressure loss than that of said first resistor; and, four fuel assemblies, each of which is adjacent to each of four lateral sides of each of a plurality of first fuel assemblies, inc
    Type: Application
    Filed: August 6, 2008
    Publication date: February 12, 2009
    Inventors: Takeshi MITSUYASU, Motoo AOYAMA, Kazuya ISHII, Masao CHAKI
  • Publication number: 20080317191
    Abstract: The present invention decreases the temperature of feed water supplied to the reactor of a set power when the flow rate of coolant supplied to the core of the reactor increases in the end of an operation cycle. This operating method can increase the thermal power of the nuclear power generation plant and increase the economical efficiency of fuel even when the operation cycle is prolonged. Particularly, even when the core flow rate increases in the end of the operation cycle, this method can suppress the rise of the cooling water temperature at the inlet of the core. Consequently, this invention can make the reactivity gain higher than that when the core flow rate is singly increased. The present invention can increase the thermal power of a nuclear reactor, and can improve the economical efficiency of fuel even when a period of an operation cycle is made longer.
    Type: Application
    Filed: June 20, 2007
    Publication date: December 25, 2008
    Inventors: Masao Chaki, Motoo Aoyama, Tetsushi Hino, Kazuya Ishii
  • Publication number: 20080181349
    Abstract: A nuclear power plant and method of operation for augmenting a second reactor thermal power output in a second operation cycle to a level larger than a first reactor thermal power output in the previous operation cycle. The plant is equipped, for example, with a reactor; a steam loop comprising high and low pressure turbines; a condenser for condensing steam discharged therefrom the low pressure turbine; a feedwater heater for heating feedwater supplied from the condenser; and a feedwater loop for leading feedwater discharged from the feedwater heater to the reactor. The operation method includes decreasing a ratio of extraction steam which is led to the feedwater heater from a steam loop in the second operation cycle.
    Type: Application
    Filed: January 2, 2008
    Publication date: July 31, 2008
    Applicant: Hitachi, Ltd.
    Inventors: Kazuaki Kitou, Masao Chaki, Kouji Shiina, Motoo Aoyama, Masaya Ohtsuka, Masayuki Nagasawa, Minoru Okura, Seiji Nemoto, Yasuhiro Takahashi
  • Patent number: 7349518
    Abstract: A ratio of the number of fuel assemblies loaded on a core to the number of control rod drive mechanisms is 3 or more. The fuel assembly itself contains mixed oxides of a low enrichment concentration uranium oxide containing 3 to 8 wt % in the average enrichment concentration of the fuel assembly, or mixed oxide containing not less than 2 wt %, but less than 6 wt % in the average enrichment concentration of fissile plutonium of. In the burner type BWR core on which the fuel assemblies are loaded, an average weight density of uranium, plutonium and minor actinides is 2.1 to 3.4 kg/L as a conversion at the value of unburned state.
    Type: Grant
    Filed: March 16, 2006
    Date of Patent: March 25, 2008
    Assignee: Hitachi, Ltd.
    Inventors: Renzou Takeda, Motoo Aoyama, Junichi Miwa, Tomohiko Ikegawa, Kumiaki Moriya
  • Patent number: 7333584
    Abstract: A nuclear power plant and method of operation for augmenting a second reactor thermal power output in a second operation cycle to a level larger than a first reactor thermal power output in the previous operation cycle. The plant is equipped, for example, with a reactor; a steam loop comprising high and low pressure turbines; a condenser for condensing steam discharged therefrom the low pressure turbine; a feedwater heater for heating feedwater supplied from the condenser; and a feedwater loop for leading feedwater discharged from the feedwater heater to the reactor. The operation method includes decreasing a ratio of extraction steam which is led to the feedwater heater from a steam loop in the second operation cycle.
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: February 19, 2008
    Assignee: Hitachi - GE Nuclear Energy, Ltd.
    Inventors: Kazuaki Kitou, Masao Chaki, Kouji Shina, Motoo Aoyama, Masaya Ohtsuka, Masayuki Nagasawa, Minoru Okura, Seiji Nemoto, Yasuhiro Takahashi
  • Publication number: 20070201605
    Abstract: A core disposed in a reactor pressure vessel includes one layer (an outermost region) at an outermost side of the core, two-three layers (an outer region) inside the outermost region and other layers (an inner region) inside the outer region. Fuel assemblies arranged in the core are supported by fuel supports having orifice. Orifice pressure loss coefficient of the orifice in the outermost region is set to be maximum and the orifice pressure loss coefficient of the orifice in the outer region is set to be minimum such that the flow rate of the coolant W for each fuel assembly in the outermost region is lowest and that for each fuel assembly in the outer region is highest. In the core of the natural circulation boiling water reactor, the reactor power distribution in a radial direction is flattened, and it is possible to increase the thermal margin.
    Type: Application
    Filed: February 28, 2007
    Publication date: August 30, 2007
    Inventors: Kazuya ISHII, Motoo AOYAMA, Tetsushi HINO
  • Publication number: 20070000250
    Abstract: A nuclear power plant and an operation method of the nuclear power plant, which can uprate plant power without greatly modifying the construction of plant equipment, while keeping a core's pressure loss characteristic, a safety margin, and a design margin in the transient state substantially the same as those before the power uprate. Thermal power in a second operation cycle of a nuclear reactor is uprated from thermal power in a first operation cycle preceding the second operation cycle at least one operation cycle. A proportion of steam extracted from a steam system and introduced to a feedwater heater, which is in particular extracted from an intermediate point and an outlet of a high pressure turbine, with respect to a flow rate of main steam is reduced in the second operation cycle from that in the first operation cycle such that temperature of feedwater discharged from the feedwater heater lowers in the range of 1° C. to 40° C. in the second operation cycle.
    Type: Application
    Filed: January 27, 2006
    Publication date: January 4, 2007
    Inventors: Masao Chaki, Kazuaki Kitou, Motoo Aoyama, Masaya Ootsuka, Kouji Shiina
  • Publication number: 20060210009
    Abstract: A ratio of the number of fuel assemblies loaded on a core to the number of control rod drive mechanisms is 3 or more. The fuel assembly itself contains mixed oxides of a low enrichment concentration uranium oxide containing 3 to 8 wt % in the average enrichment concentration of the fuel assembly, or mixed oxide containing not less than 2 wt %, but less than 6 wt % in the average enrichment concentration of fissile plutonium of. In the burner type BWR core on which the fuel assemblies are loaded, an average weight density of uranium, plutonium and minor actinides is 2.1 to 3.4 kg/L as a conversion at the value of unburned state.
    Type: Application
    Filed: March 16, 2006
    Publication date: September 21, 2006
    Inventors: Renzou Takeda, Motoo Aoyama, Junichi Miwa, Tomohiko Ikegawa, Kumiaki Moriya
  • Publication number: 20050220253
    Abstract: A nuclear power plant of the invention is equipped, for example, with a reactor; a steam loop comprising high and low pressure turbines; a condenser for condensing steam discharged therefrom the low pressure turbine; a feedwater heater for heating feedwater supplied from the condenser; and a feedwater loop for leading feedwater discharged from the feedwater heater to the reactor, and an operation method thereof is characterized by augmenting a second reactor thermal power output in a second operation cycle of the reactor larger than a first reactor thermal power output in a first operation cycle; and making an increase ratio of extraction steam, which is led to the feedwater heater with being extracted from the steam loop, in the second operation cycle for the first operation cycle smaller than an increase ratio of the second reactor thermal power output for the first reactor thermal power output.
    Type: Application
    Filed: January 13, 2005
    Publication date: October 6, 2005
    Applicant: Hitachi, Ltd.
    Inventors: Kazuaki Kitou, Masao Chaki, Kouji Shina, Motoo Aoyama, Masaya Ohtsuka, Masayuki Nagasawa, Minoru Okura, Seiji Nemoto, Yasuhiro Takahashi
  • Patent number: 6516043
    Abstract: A fuel assembly includes a plurality of fuel rods placed in a square lattice array of 9-rows/9-columns and at least one water rod. In this fuel assembly, the fuel rod pitch of the plurality of fuel rods is in a range of 14.15 mm to 14.65 mm, and means for offsetting and holding a fuel bundle composed of the fuel rods and the water rod is provided in such a manner that the center in a cross section of the fuel bundle is offset from the center in a cross section of the lower tie plate toward the channel fastener side. With this configuration, it is possible to provide a fuel assembly for a D-lattice core, which is capable of achieving the fuel economy comparable to that of a C-lattice core without reducing the thermal margin, and of using the existing fuel spacers.
    Type: Grant
    Filed: December 23, 1999
    Date of Patent: February 4, 2003
    Assignees: Hitachi, Ltd., Hitachi Engineering Co., Ltd.
    Inventors: Masao Chaki, Koji Nishida, Motoo Aoyama, Junichi Koyama, Katsumasa Haikawa, Yasuhiro Aizawa
  • Patent number: 6512805
    Abstract: There are provided a light water reactor core which has the same levels in cost efficiency and degree of safety as those of an existing BWR under operation now, that is, which is oriented to plutonium multi-recycle having a breeding ratio near 1.0 or slightly larger and having a negative void coefficient with minimizing modification of the reactor core structure of the existing BWR under operation now, and to fuel assemblies used for the boiling water reactor. The light water reactor core having an effective water-to-fuel volume ratio of 0.1 to 0.
    Type: Grant
    Filed: September 12, 2000
    Date of Patent: January 28, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Renzo Takeda, Motoo Aoyama, Junichi Miwa, Motohiko Ikegawa