Patents by Inventor Mou-Shiung Lin

Mou-Shiung Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190257819
    Abstract: A method of obtaining stem cells, comprising: obtaining one or more peripheral blood samples from a subject between 30 minutes and 48 hours after the subject ingests fucoidan; and collecting one or more types of stem cells from each of the one or more peripheral blood samples, wherein the one or more types of stem cells include Lgr5(+) stem cells that are between 0.1 and 6.0 micrometers in size.
    Type: Application
    Filed: May 3, 2019
    Publication date: August 22, 2019
    Inventors: James Wang, Steve K Chen, Mou-Shiung Lin, Yun Yen
  • Publication number: 20190253056
    Abstract: A three-dimensional programmable interconnection system based on a multi-chip package includes: a programmable metal bump or pad at a bottom of the multi-chip package; a first programmable interconnect provided by an interposer of the multi-chip package; a second programmable interconnect provided by the interposer; and a switch provided by a first semiconductor chip of the multi-chip package, wherein the switch is configured to control connection between the first and second programmable interconnects, wherein the programmable metal bump or pad couples to a second semiconductor chip of the multi-chip package through the switch and the first and second programmable interconnects, wherein the first and second semiconductor chips are over the interposer.
    Type: Application
    Filed: February 13, 2019
    Publication date: August 15, 2019
    Inventors: Mou-Shiung Lin, Jin-Yuan Lee
  • Publication number: 20190245543
    Abstract: A field-programmable-gate-array (FPGA) integrated-circuit (IC) chip configured to perform a logic function based on a look-up table (LUT), includes: multiple non-volatile memory cells therein configured to store multiple resulting values of the look-up table (LUT); and a programmable logic block therein having multiple static-random-access-memory (SRAM) cells configured to store the resulting values passed from the non-volatile memory cells, wherein the programmable logic block is configured to select, in accordance with one of the combinations of its inputs, one from the resulting values stored in the static-random-access-memory (SRAM) cells into its output.
    Type: Application
    Filed: January 21, 2019
    Publication date: August 8, 2019
    Inventors: Jin-Yuan Lee, Mou-Shiung Lin
  • Publication number: 20190238135
    Abstract: A multi-chip package includes a field-programmable-gate-array (FPGA) integrated-circuit (IC) chip configured to perform a logic function based on a truth table, wherein the field-programmable-gate-array (FPGA) integrated-circuit (IC) chip comprises multiple non-volatile memory cells therein configured to store multiple resulting values of the truth table, and a programmable logic block therein configured to select, in accordance with one of the combinations of its inputs, one from the resulting values into its output; and a memory chip coupling to the field-programmable-gate-array (FPGA) integrated-circuit (IC) chip, wherein a data bit width between the field-programmable-gate-array (FPGA) integrated-circuit (IC) chip and the memory chip is greater than or equal to 64.
    Type: Application
    Filed: January 30, 2019
    Publication date: August 1, 2019
    Inventors: Mou-Shiung Lin, Jin-Yuan Lee
  • Publication number: 20190238134
    Abstract: A chip package comprises an interposer; an FPGA IC chip over the interposer, wherein the FPGA IC chip comprises a programmable logic block configured to perform a logic operation on its inputs, wherein the programmable logic block comprises a look-up table configured to be provided with multiple resulting values of the logic operation on multiple combinations of the inputs of the programmable logic block respectively, wherein the programmable logic block is configured to select, in accordance with one of the combinations of its inputs, one from the resulting values into its output, and multiple non-volatile memory cells configured to save the resulting values respectively; multiple first metal bumps between the interposer and the FPGA IC chip; and an underfill between the interposer and the FPGA IC chip, wherein the underfill encloses the first metal bumps.
    Type: Application
    Filed: September 10, 2018
    Publication date: August 1, 2019
    Inventors: Jin-Yuan Lee, Mou-Shiung Lin
  • Publication number: 20190051641
    Abstract: A chip package includes an interposer comprising a silicon substrate, multiple metal vias passing through the silicon substrate, a first interconnection metal layer over the silicon substrate, a second interconnection metal layer over the silicon substrate, and an insulating dielectric layer over the silicon substrate and between the first and second interconnection metal layers; a field-programmable-gate-array (FPGA) integrated-circuit (IC) chip over the interposer; multiple first metal bumps between the interposer and the FPGA IC chip; a first underfill between the interposer and the FPGA IC chip, wherein the first underfill encloses the first metal bumps; a non-volatile memory (NVM) IC chip over the interposer; multiple second metal bumps between the interposer and the NVM IC chip; and a second underfill between the interposer and the NVM IC chip, wherein the second underfill encloses the second metal bumps.
    Type: Application
    Filed: August 7, 2018
    Publication date: February 14, 2019
    Inventors: Jin-Yuan Lee, Mou-Shiung Lin
  • Publication number: 20190020343
    Abstract: A field-programmable-gate-array (FPGA) IC chip includes multiple first non-volatile memory cells in the FPGA IC chip, wherein the first non-volatile memory cells are configured to save multiple resulting values for a look-up table (LUT) of a programmable logic block of the FPGA IC chip, wherein the programmable logic block is configured to select, in accordance with its inputs, one from the resulting values into its output; and multiple second non-volatile memory cells in the FPGA IC chip, wherein the second non-volatile memory cells are configured to save multiple programming codes configured to control a switch of the FPGA IC chip.
    Type: Application
    Filed: July 9, 2018
    Publication date: January 17, 2019
    Inventors: Jin-Yuan Lee, Mou-Shiung Lin
  • Publication number: 20180165396
    Abstract: A chip package used as a logic drive, includes: multiple semiconductor chips, a polymer layer horizontally between the semiconductor chips; multiple metal layers over the semiconductor chips and polymer layer, wherein the metal layers are connected to the semiconductor chips and extend across edges of the semiconductor chips, wherein one of the metal layers has a thickness between 0.5 and 5 micrometers and a trace width between 0.5 and 5 micrometers; multiple dielectric layers each between neighboring two of the metal layers and over the semiconductor chips and polymer layer, wherein the dielectric layers extend across the edges of the semiconductor chips, wherein one of the dielectric layers has a thickness between 0.5 and 5 micrometers; and multiple metal bumps on a top one of the metal layers, wherein one of the semiconductor chips is a FPGA IC chip, and another one of the semiconductor chips is a NVMIC chip.
    Type: Application
    Filed: December 14, 2017
    Publication date: June 14, 2018
    Inventors: Mou-Shiung LIN, Jin-Yuan LEE
  • Publication number: 20180158746
    Abstract: A chip package may include a first polymer layer and a first semiconductor chip in the first polymer layer. The first semiconductor chip may include a first semiconductor device and a first semiconductor substrate supporting the first semiconductor device. The first semiconductor chip may also have a first contact pad coupled to the first semiconductor device. The first semiconductor chip may further include a first conductive interconnect on the first contact pad. The chip package may also include a second polymer layer on the first polymer layer and across an edge of the first semiconductor chip. The chip package may further include a first conductive layer in the second polymer layer and directly on a surface of the first conductive interconnect, and across the edge of the first semiconductor chip.
    Type: Application
    Filed: January 11, 2018
    Publication date: June 7, 2018
    Inventor: Mou-Shiung LIN
  • Patent number: 9899284
    Abstract: A method for fabricating chip package includes providing a semiconductor chip with a metal bump, next adhering the semiconductor chip to a substrate using a glue material, next forming a polymer material on the substrate, on the semiconductor chip, and on the metal bump, next polishing the polymer material, next forming a patterned circuit layer over the polymer material and connected to the metal bump, and then forming a tin-containing ball over the patterned circuit layer and connected to the patterned circuit layer.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: February 20, 2018
    Assignee: QUALCOMM Incorporated
    Inventor: Mou-Shiung Lin
  • Publication number: 20180031542
    Abstract: A method of evaluating an action includes (1) obtaining a first stem-cell data related to a subject before performing the action, (2) performing the action on the subject, (3) obtaining a second stem-cell data related to the subject after performing the action, and (4) identifying the effect of the action on the subject based on the first stem-cell data and the second stem-cell data. The subject may be a human or an animal. The action may be taking a drug or taking a nutrient or dietary supplement, which may include fucoidan. Each of the first and second stem-cell data may include the count of a type or types of stem cells and/or the percentage of the type or types of stem cells and may be obtained by the same method including counting cells using a cell counter or cell counting device such as flow cytometer.
    Type: Application
    Filed: October 6, 2017
    Publication date: February 1, 2018
    Inventors: James Wang, Steve K. Chen, Mou-Shiung Lin, Yun Yen
  • Publication number: 20180024122
    Abstract: A method of obtaining stem cells includes (1) a subject (such as a human or an animal) taking or being subjected to an action, (2) after the subject taking or being subject to the action, the subject waiting for a predetermined time interval (such as between 30 minutes and 2 hours), (3) after the subject waiting for the predetermined time interval, taking a tissue sample (such as a peripheral blood of the subject) from the subject, and (4) collecting the stem cells from the tissue sample. The step of the subject taking or being subjected to the action may include the subject taking a herb medicine or an object containing fucoidan. The stem cells may be configured for a dental implant surgery. The stem cells may include a CD9(+), CD349(+) cell between 0.1 and 6.0 micrometers in size and/or a Lgr5(+) cell between 0.1 and 6.0 micrometers in size.
    Type: Application
    Filed: September 29, 2017
    Publication date: January 25, 2018
    Inventors: James Wang, Steve K. Chen, Mou-Shiung Lin, Yun Yen
  • Patent number: 9810684
    Abstract: A method of evaluating an action includes (1) obtaining a first stem-cell data related to a subject before performing the action, (2) performing the action on the subject, (3) obtaining a second stem-cell data related to the subject after performing the action, and (4) identifying the effect of the action on the subject based on the first stem-cell data and the second stem-cell data. The subject may be a human or an animal. The action may be taking a drug or taking a nutrient or dietary supplement, which may include fucoidan. Each of the first and second stem-cell data may include the count of a type or types of stem cells and/or the percentage of the type or types of stem cells and may be obtained by the same method including counting cells using a cell counter or cell counting device such as flow cytometer.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: November 7, 2017
    Assignee: StemBios Technologies, Inc.
    Inventors: James Wang, Steve K Chen, Mou-Shiung Lin, Yun Yen
  • Patent number: 9612615
    Abstract: Integrated circuit chips and chip packages are disclosed that include an over-passivation scheme at a top of the integrated circuit chip and a bottom scheme at a bottom of the integrated circuit chip using a top post-passivation technology and a bottom structure technology. The integrated circuit chips can be connected to an external circuit or structure, such as ball-grid-array (BGA) substrate, printed circuit board, semiconductor chip, metal substrate, glass substrate or ceramic substrate, through the over-passivation scheme or the bottom scheme. Related fabrication techniques are described.
    Type: Grant
    Filed: May 1, 2013
    Date of Patent: April 4, 2017
    Assignee: QUALCOMM INCORPORATED
    Inventors: Mou-Shiung Lin, Jin-Yuan Lee, Hsin-Jung Lo, Ping-Jung Yang, Te-Sheng Liu
  • Publication number: 20160300771
    Abstract: A method for fabricating chip package includes providing a semiconductor chip with a metal bump, next adhering the semiconductor chip to a substrate using a glue material, next forming a polymer material on the substrate, on the semiconductor chip, and on the metal bump, next polishing the polymer material, next forming a patterned circuit layer over the polymer material and connected to the metal bump, and then forming a tin-containing ball over the patterned circuit layer and connected to the patterned circuit layer.
    Type: Application
    Filed: June 13, 2016
    Publication date: October 13, 2016
    Inventor: Mou-Shiung LIN
  • Patent number: 9391021
    Abstract: A method for fabricating chip package includes providing a semiconductor chip with a metal bump, next adhering the semiconductor chip to a substrate using a glue material, next forming a polymer material on the substrate, on the semiconductor chip, and on the metal bump, next polishing the polymer material, next forming a patterned circuit layer over the polymer material and connected to the metal bump, and then forming a tin-containing ball over the patterned circuit layer and connected to the patterned circuit layer.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: July 12, 2016
    Assignee: QUALCOMM INCORPORATED
    Inventor: Mou-Shiung Lin
  • Patent number: 9153555
    Abstract: A method and structure are provided to enable wire bond connections over active and/or passive devices and/or low-k dielectrics, formed on an Integrated Circuit die. A semiconductor substrate having active and/or passive devices is provided, with interconnect metallization formed over the active and/or passive devices. A passivation layer formed over the interconnect metallization is provided, wherein openings are formed in the passivation layer to an upper metal layer of the interconnect metallization. Compliant metal bond pads are formed over the passivation layer, wherein the compliant metal bond pads are connected through the openings to the upper metal layer, and wherein the compliant metal bond pads are formed substantially over the active and/or passive devices. The compliant metal bond pads may be formed of a composite metal structure.
    Type: Grant
    Filed: February 25, 2007
    Date of Patent: October 6, 2015
    Assignee: QUALCOMM INCORPORATED
    Inventors: Jin-Yuan Lee, Ying-Chih Chen, Mou-Shiung Lin
  • Patent number: 9142527
    Abstract: A method and structure are provided to enable wire bond connections over active and/or passive devices and/or low-k dielectrics, formed on an Integrated Circuit die. A semiconductor substrate having active and/or passive devices is provided, with interconnect metallization formed over the active and/or passive devices. A passivation layer formed over the interconnect metallization is provided, wherein openings are formed in the passivation layer to an upper metal layer of the interconnect metallization. Compliant metal bond pads are formed over the passivation layer, wherein the compliant metal bond pads are connected through the openings to the upper metal layer, and wherein the compliant metal bond pads are formed substantially over the active and/or passive devices. The compliant metal bond pads may be formed of a composite metal structure.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: September 22, 2015
    Assignee: QUALCOMM INCORPORATED
    Inventors: Jin-Yuan Lee, Ying-Chih Chen, Mou-Shiung Lin
  • Patent number: 9136246
    Abstract: An integrated chip package structure and method of manufacturing the same is by adhering dies on a silicon substrate and forming a thin-film circuit layer on top of the dies and the silicon substrate. Wherein the thin-film circuit layer has an external circuitry, which is electrically connected to the metal pads of the dies, that extends to a region outside the active surface of the dies for fanning out the metal pads of the dies. Furthermore, a plurality of active devices and an internal circuitry is located on the active surface of the dies. Signal for the active devices are transmitted through the internal circuitry to the external circuitry and from the external circuitry through the internal circuitry back to other active devices. Moreover, the chip package structure allows multiple dies with different functions to be packaged into an integrated package and electrically connecting the dies by the external circuitry.
    Type: Grant
    Filed: January 9, 2004
    Date of Patent: September 15, 2015
    Assignee: QUALCOMM INCORPORATED
    Inventors: Mou-Shiung Lin, Jin-Yuan Lee, Ching-Cheng Huang
  • Patent number: 9030029
    Abstract: An integrated chip package structure and method of manufacturing the same is by adhering dies on a silicon substrate and forming a thin-film circuit layer on top of the dies and the silicon substrate. Wherein the thin-film circuit layer has an external circuitry, which is electrically connected to the metal pads of the dies, that extends to a region outside the active surface of the dies for fanning out the metal pads of the dies. Furthermore, a plurality of active devices and an internal circuitry is located on the active surface of the dies. Signal for the active devices are transmitted through the internal circuitry to the external circuitry and from the external circuitry through the internal circuitry back to other active devices. Moreover, the chip package structure allows multiple dies with different functions to be packaged into an integrated package and electrically connecting the dies by the external circuitry.
    Type: Grant
    Filed: January 22, 2002
    Date of Patent: May 12, 2015
    Assignee: Qualcomm Incorporated
    Inventors: Mou-Shiung Lin, Jin-Yuan Lee, Ching-Cheng Huang