Patents by Inventor Muhammad Atiqullah

Muhammad Atiqullah has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10301410
    Abstract: A catalyst consisting essentially of at least one tertiary monophenyl amine having a formula R1R2N-aryl, where R1 and R2 are the same or different, and each is a hydrogen, an alkyl, or a cycloalkyl group, where at least one of R1 and R2 contain at least one carbon atom; at least one titanium halide having a formula TiXm, where m is from 2.5 to 4.0 and X is a halogen containing moiety; and at least one cocatalyst having a formula AlRn Y3-n where R is a hydrocarbon radical, Y is a halogen or hydrogen, and n is 1-3. Further, the catalyst is absent of a carrier or support.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: May 28, 2019
    Assignees: Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
    Inventors: Muhammad Atiqullah, Abdel Salam Al-Sarkhi, Faisal Mohammed Al-Thenayan, Abdullah Raddad Al-Malki, Wei Xu, Anwar Hossaen
  • Patent number: 10287374
    Abstract: A method of reducing drag in a conduit. The method includes producing ultra high molecular weight (UHMW) C4-C30 ?-olefin drag reducing agent (DRA) and introducing the UHMW C4-C30 ?-olefin polymer DRA into the conduit to reduce drag in the conduit. The catalyst consists essentially of at least one tertiary monophenyl amine selected from the group consisting of N,N-diethylaniline, N-ethyl-N-methylparatolylamine, N,N-dipropylaniline, N,N-diethylmesitylamine, and combinations thereof; at least one titanium halide having a formula TiXm, where m is from 2.5 to 4.0 and X is a halogen containing moiety; and at least one cocatalyst having a formula AlRnY3-n where R is a hydrocarbon radical, Y is a halogen or hydrogen, and n is 1-20. Further, the catalyst is absent of a carrier or support.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: May 14, 2019
    Assignees: Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
    Inventors: Muhammad Atiqullah, Abdel Salam Al-Sarkhi, Faisal Mohammed Al-Thenayan, Abdullah Raddad Al-Malki, Wei Xu, Anwar Hossaen
  • Patent number: 9969826
    Abstract: A method of producing ultra high molecular weight (UHMW) C4-C30 ?-olefin drag reducing agent (DRA). The method includes polymerizing in a reactor a first ?-olefin monomer in the presence of catalyst and hydrocarbon solvent to produce the DRA. The catalyst consists essentially of at least one tertiary monophenyl amine having a formula R1R2N-aryl, where R1 and R2 are the same or different, and each is a hydrogen, an alkyl, or a cycloalkyl group, where at least one of R1 and R2 contain at least one carbon atom; at least one titanium halide having a formula TiXm, where m is from 2.5 to 4.0 and X is a halogen containing moiety; and at least one cocatalyst having a formula AlRnY3-n where R is a hydrocarbon radical, Y is a halogen or hydrogen, and n is 1-20. Further, the catalyst is absent of a carrier or support.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: May 15, 2018
    Assignees: Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
    Inventors: Muhammad Atiqullah, Abdel Salam Al-Sarkhi, Faisal Mohammed Al-Thenayan, Abdullah Raddad Al-Malki, Wei Xu, Anwar Hossaen
  • Publication number: 20180051110
    Abstract: A catalyst consisting essentially of at least one tertiary monophenyl amine having a formula R1R2N-aryl, where R1 and R2 are the same or different, and each is a hydrogen, an alkyl, or a cycloalkyl group, where at least one of R1 and R2 contain at least one carbon atom; at least one titanium halide having a formula TiXm, where m is from 2.5 to 4.0 and X is a halogen containing moiety; and at least one cocatalyst having a formula AlRn Y3-n where R is a hydrocarbon radical, Y is a halogen or hydrogen, and n is 1-3. Further, the catalyst is absent of a carrier or support.
    Type: Application
    Filed: October 12, 2017
    Publication date: February 22, 2018
    Applicants: Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
    Inventors: Muhammad Atiqullah, Abdel Salam Al-Sarkhi, Faisal Mohammed Al-Thenayan, Abdullah Raddad Al-Malki, Wei Xu, Anwar Hossaen
  • Publication number: 20180030178
    Abstract: A method of reducing drag in a conduit. The method includes producing ultra high molecular weight (UHMW) C4-C30 ?-olefin drag reducing agent (DRA) and introducing the UHMW C4-C30 ?-olefin polymer DRA into the conduit to reduce drag in the conduit. The catalyst consists essentially of at least one tertiary monophenyl amine selected from the group consisting of N,N-diethylaniline, N-ethyl-N-methylparatolylamine, N,N-dipropylaniline, N,N-diethylmesitylamine, and combinations thereof; at least one titanium halide having a formula TiXm, where m is from 2.5 to 4.0 and X is a halogen containing moiety; and at least one cocatalyst having a formula AlRnY3-n where R is a hydrocarbon radical, Y is a halogen or hydrogen, and n is 1-20. Further, the catalyst is absent of a carrier or support.
    Type: Application
    Filed: October 12, 2017
    Publication date: February 1, 2018
    Applicants: Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
    Inventors: Muhammad Atiqullah, Abdel Salam Al-Sarkhi, Faisal Mohammed Al-Thenayan, Abdullah Raddad Al-Malki, Wei Xu, Anwar Hossaen
  • Patent number: 9836584
    Abstract: A method for quantitative determination of nonisothermal thermooxidative degradation effects of a polyolefin material containing a residual catalyst. The method includes determining a first thermooxidative degradation by obtaining a thermogravimetric analysis spectrum of polyolefin, and then modifying the first thermooxidative degradation based on a structure of the residual catalyst to obtain final thermooxidative degradation properties of the polyolefin.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: December 5, 2017
    Assignees: King Fahd University of Petroleum and Minerals, King Abdulaziz City of Science and Technology
    Inventors: Muhammad Atiqullah, Mohammad Mozahar Hossain
  • Patent number: 9834630
    Abstract: The supported metallocene catalyst for olefin polymerization is (nBuCp)2ZrCl2 impregnated onto a silica support having MAO tethered thereon. The catalyst is made by dehydroxylating silica, adding MAO dropwise to a slurry of the silica in toluene, heating the mixture for several hours, reacting (nBuCp)2ZrCl2 in toluene solvent with the MAO/silica support, and drying the catalyst under vacuum. The catalyst may be used, e.g., to catalyze copolymerization of ethylene with 1-hexene.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: December 5, 2017
    Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Muhammad Atiqullah, Mamdouh A. Al-Harthi, Siripon Anantawaraskul, Abdul-Hamid M. Emwas, Anwar Ul-Hamid, Anwar Hossaen
  • Publication number: 20170145130
    Abstract: A method of producing ultra high molecular weight (UHMW) C4-C30 ?-olefin drag reducing agent (DRA). The method includes polymerizing in a reactor a first ?-olefin monomer in the presence of catalyst and hydrocarbon solvent to produce the DRA. The catalyst consists essentially of at least one tertiary monophenyl amine having a formula R1R2N-aryl, where R1 and R2 are the same or different, and each is a hydrogen, an alkyl, or a cycloalkyl group, where at least one of R1 and R2 contain at least one carbon atom; at least one titanium halide having a formula TiXm, where m is from 2.5 to 4.0 and X is a halogen containing moiety; and at least one cocatalyst having a formula AlRnY3-n where R is a hydrocarbon radical, Y is a halogen or hydrogen, and n is 1-20. Further, the catalyst is absent of a carrier or support.
    Type: Application
    Filed: November 11, 2016
    Publication date: May 25, 2017
    Applicants: Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
    Inventors: Muhammad Atiqullah, Abdel Salam Al-Sarkhi, Faisal Mohammed Al-Thenayan, Abdullah Raddad Al-Malki, Wei Xu, Anwar Hossaen
  • Publication number: 20150353658
    Abstract: The supported metallocene catalyst for olefin polymerization is (nBuCp)2ZrCl2 impregnated onto a silica support having nBuSnCl3 and MAO tethered thereon. The catalyst is made by dehydroxylating silica, forming a silica/toluene slurry, injecting nBuSnCl3 into the slurry, refluxing the silica/toluene/nBuSnCl3 slurry, adding MAO dropwise to a slurry of the nBuSnCl3-functionalized silica in toluene, heating the mixture for several hours, reacting (nBuCp)2ZrCl2 in toluene solvent with the MAO/nBuSnCl3-functionalized silica support, and drying the catalyst under vacuum. The catalyst may be used, e.g., to catalyze copolymerization of ethylene with 1-hexene.
    Type: Application
    Filed: June 9, 2015
    Publication date: December 10, 2015
    Inventors: MUHAMMAD ATIQULLAH, MAMDOUH A. AL-HARTHI, ABDUL-HAMID M. EMWAS, SIRIPON ANANTAWARASKUL, ANWAR UL-HAMID, ANWAR HOSSAEN
  • Publication number: 20150353659
    Abstract: The supported metallocene catalyst for olefin polymerization is (nBuCp)2ZrCl2 impregnated onto a silica support having MAO tethered thereon. The catalyst is made by dehydroxylating silica, adding MAO dropwise to a slurry of the silica in toluene, heating the mixture for several hours, reacting (nBuCp)2ZrCl2 in toluene solvent with the MAO/silica support, and drying the catalyst under vacuum. The catalyst may be used, e.g., to catalyze copolymerization of ethylene with 1-hexene.
    Type: Application
    Filed: June 9, 2015
    Publication date: December 10, 2015
    Inventors: MUHAMMAD ATIQULLAH, MAMDOUH A. AL-HARTHI, SIRIPON ANANTAWARASKUL, ABDUL-HAMID M. EMWAS, ANWAR UL-HAMID, ANWAR HOSSAEN
  • Publication number: 20150186620
    Abstract: A method for quantitative determination of nonisothermal thermooxidative degradation effects of a polyolefin material containing a residual catalyst. The method includes determining a first thermooxidative degradation by obtaining a thermogravimetric analysis spectrum of polyolefin, and then modifying the first thermooxidative degradation based on a structure of the residual catalyst to obtain final thermooxidative degradation properties of the polyolefin.
    Type: Application
    Filed: December 30, 2013
    Publication date: July 2, 2015
    Applicants: KING ABDULAZIZ CITY FOR SCIENCE AND TECHNOLOGY, KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Muhammad ATIQULLAH, Mohammad Mozahar HOSSAIN
  • Patent number: 6908876
    Abstract: The present invention relates to a supported catalyst system for olefin polymerization which comprises at least one metallocene component and a support of an inorganic oxide of silica, aluminum or a polymer containing hydroxyl groups. The support is modified with an organogermane and/or organotin compound. The inventive catalyst system produces minimal reactor fouling, has excellent productivity and good hydrogen responsiveness. The present invention also relates to a process for preparing the catalyst system and to the slurry/suspension or gas-phase polymerization of olefins using the catalytic system, optionally with a small amount of aluminoxane cocatalyst.
    Type: Grant
    Filed: April 16, 2003
    Date of Patent: June 21, 2005
    Assignee: Saudi Basic Industries Corporation
    Inventors: Muhammad Atiqullah, Akhlaq Moman, Muhammad Naseem Akhtar, Atieh Abu-Raqabah, Syriac J. Palackal, Muhammad A. Al-Saleh, Faizur Rahman, Muhammad Ibrahim, Javaid H. Khan
  • Publication number: 20040209766
    Abstract: The present invention relates to a supported catalyst system for olefin polymerization which comprises at least one metallocene component and a support of an inorganic oxide of silica, aluminum or a polymer containing hydroxyl groups. The support is modified with an organogermane and/or organotin compound. The inventive catalyst system produces minimal reactor fouling, has excellent productivity and good hydrogen responsiveness. The present invention also relates to a process for preparing the catalyst system and to the slurry/suspension or gas-phase polymerization of olefins using the catalytic system, optionally with a small amount of aluminoxane cocatalyst.
    Type: Application
    Filed: April 16, 2003
    Publication date: October 21, 2004
    Inventors: Muhammad Atiqullah, Akhlaq Moman, Muhammad Naseem Akhtar, Atieh Abu-Raqabah, Syriac J. Palackal, Muhammad A. Al-Saleh, Faizur Rahman, Muhammad Ibrahim, Javaid H. Khan