Patents by Inventor Muhammad Musab Jilani

Muhammad Musab Jilani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11969246
    Abstract: A sensor implanted in tissues and including a sensing layer is fabricated by mixing the signal transduction enzyme with non-reactive components including buffer salts and fillers, and spin coating the enzyme onto a substrate. The signal transduction enzyme is crosslinked by introducing the coated substrate in a vacuum chamber. In the chamber, a crosslinker evaporates and is deposited onto the enzyme, therefore crosslinking the enzyme.
    Type: Grant
    Filed: May 17, 2023
    Date of Patent: April 30, 2024
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Samson Chen, Axel Scherer, Dvin I. Adalian, Peter Petillo, Muhammad Musab Jilani, Xiomara L. Madero, Deepan Kishore Kumar
  • Patent number: 11903708
    Abstract: A sensor implanted in tissues and including a sensing enzyme takes an electrical measurement and compares it to reference curves for the voltage current relationship. The sensor determines whether molecular compounds are present which interfere with the detection of the molecule of interest. If interfering species are found, the measurement voltage is set in a low range to reduce errors, while if the interfering species are not found, the measurement voltage is set in a high range to increase the detected signal.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: February 20, 2024
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Samson Chen, Axel Scherer, Muhammad Musab Jilani, Xiomara L. Madero
  • Publication number: 20230363672
    Abstract: A sensor implanted in tissues and including a sensing layer is fabricated by mixing the signal transduction enzyme with non-reactive components including buffer salts and fillers, and spin coating the enzyme onto a substrate. The signal transduction enzyme is crosslinked by introducing the coated substrate in a vacuum chamber. In the chamber, a crosslinker evaporates and is deposited onto the enzyme, therefore crosslinking the enzyme.
    Type: Application
    Filed: May 17, 2023
    Publication date: November 16, 2023
    Inventors: Samson CHEN, Axel SCHERER, Dvin I. ADALIAN, Peter PETILLO, Muhammad Musab JILANI, Xiomara L. MADERO, Deepan KISHORE KUMAR
  • Patent number: 11690544
    Abstract: A sensor implanted in tissues and including a sensing layer is fabricated by mixing the signal transduction enzyme with non-reactive components including buffer salts and fillers, and spin coating the enzyme onto a substrate. The signal transduction enzyme is crosslinked by introducing the coated substrate in a vacuum chamber. In the chamber, a crosslinker evaporates and is deposited onto the enzyme, therefore crosslinking the enzyme.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: July 4, 2023
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Samson Chen, Axel Scherer, Dvin Adalian, Peter Petillo, Muhammad Musab Jilani, Xiomara L. Madero, Deepan Kishore Kumar
  • Publication number: 20230121718
    Abstract: Methods and systems are described for fabricating thin hydrogel layers on biosensors by a drop-spin method, which includes placing a drop of the hydrogel on the electrode, spinning the wafer at high speed in a vacuum, and heating the wafer to cure. One and multilayer sensors can be fabricated in this way, by adding layers of hydrogel or metal.
    Type: Application
    Filed: October 14, 2022
    Publication date: April 20, 2023
    Inventors: Oliver PLETTENBURG, Christin AHLBRECHT, Dvin ADALIAN, Axel SCHERER, Xiomara Linnette MADERO, Samson CHEN, Muhammad Musab JILANI
  • Publication number: 20210321918
    Abstract: A sensor implanted in tissues and including a sensing layer is fabricated by mixing the signal transduction enzyme with non-reactive components including buffer salts and fillers, and spin coating the enzyme onto a substrate. The signal transduction enzyme is crosslinked by introducing the coated substrate in a vacuum chamber. In the chamber, a crosslinker evaporates and is deposited onto the enzyme, therefore crosslinking the enzyme.
    Type: Application
    Filed: May 7, 2021
    Publication date: October 21, 2021
    Inventors: Samson CHEN, Axel SCHERER, Dvin ADALIAN, Peter PETILLO, Muhammad Musab JILANI, Xiomara L. MADERO, Deepan KISHORE KUMAR
  • Patent number: 11026610
    Abstract: A sensor implanted in tissues and including a sensing layer is fabricated by mixing the signal transduction enzyme with non-reactive components including buffer salts and fillers, and spin coating the enzyme onto a substrate. The signal transduction enzyme is crosslinked by introducing the coated substrate in a vacuum chamber. In the chamber, a crosslinker evaporates and is deposited onto the enzyme, therefore crosslinking the enzyme.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: June 8, 2021
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Samson Chen, Axel Scherer, Dvin Adalian, Peter Petillo, Muhammad Musab Jilani, Xiomara L. Madero, Deepan Kishore Kumar
  • Patent number: 10959617
    Abstract: A sensing device allows detection of biological quantities in ways that are minimally invasive. Micrometer or nanometer sized needles allow sensing of bodily fluids in a minimally invasive method. The device comprises electronics and power harvesting. Antennas or coils allow communication and power harvesting from an external device, which can be attached to smartphones to allow operation of a camera and camera light for biosensing.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: March 30, 2021
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Axel Scherer, Muhammad Mujeeb-U-Rahman, Meisam Honavar Nazari, Muhammad Musab Jilani
  • Publication number: 20190117071
    Abstract: A sensing device allows detection of biological quantities in ways that are minimally invasive. Micrometer or nanometer sized needles allow sensing of bodily fluids in a minimally invasive method. The device comprises electronics and power harvesting. Antennas or coils allow communication and power harvesting from an external device, which can be attached to smartphones to allow operation of a camera and camera light for biosensing.
    Type: Application
    Filed: November 29, 2018
    Publication date: April 25, 2019
    Inventors: Axel Scherer, Muhammad Mujeeb-U-Rahman, Meisam Honavar Nazari, Muhammad Musab Jilani
  • Patent number: 10172520
    Abstract: A sensing device allows detection of biological quantities in ways that are minimally invasive. Micrometer or nanometer sized needles allow sensing of bodily fluids in a minimally invasive method. The device comprises electronics and power harvesting. Antennas or coils allow communication and power harvesting from an external device, which can be attached to smartphones to allow operation of a camera and camera light for biosensing.
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: January 8, 2019
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Axel Scherer, Muhammad Mujeeb-U-Rahman, Meisam Honavar Nazari, Muhammad Musab Jilani
  • Publication number: 20170055835
    Abstract: A sensing device allows detection of biological quantities in ways that are minimally invasive. Micrometer or nanometer sized needles allow sensing of bodily fluids in a minimally invasive method. The device comprises electronics and power harvesting. Antennas or coils allow communication and power harvesting from an external device, which can be attached to smartphones to allow operation of a camera and camera light for biosensing.
    Type: Application
    Filed: July 28, 2016
    Publication date: March 2, 2017
    Inventors: Axel SCHERER, Muhammad Mujeeb-U-Rahman, Meisam Honavar Nazari, Muhammad Musab Jilani