Patents by Inventor Murat Okandan

Murat Okandan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11621542
    Abstract: A laser array (100) is described herein, wherein the laser array comprises semiconductor lasers (102, 104) that are precisely controlled such that an optical beam output by the laser array has desired shape and direction.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: April 4, 2023
    Inventor: Murat Okandan
  • Publication number: 20230045136
    Abstract: Structured photovoltaic assemblies and method of manufacture therefor. The assemblies can be assembled similar to flex circuits and have mechanical support structures disposed within the assembly. The supports can be sized and shaped to one or a group of solar cells in the assembly. The solar cells supported by a particular support may be interconnected with cells supported by a different support. The supports can be transparent. The connection of the interconnects to the solar cells can be enhanced by forming protrusions in vias through openings in the Insulating layer that are aligned with the solar cells. Alternatively, the openings can be filled with a conductive material in such forms as powder, ink, paste, or metal nanoparticles, and a laser can be used to melt and/or sinter the material to form the connection to the solar cell. These techniques can withstand large temperature swings over a large number of cycles, which occur in, for example, space applications.
    Type: Application
    Filed: January 29, 2021
    Publication date: February 9, 2023
    Applicant: mPower Technology, Inc.
    Inventor: Murat Okandan
  • Patent number: 11552211
    Abstract: A moldable photovoltaic module is provided. The module includes a flexible polymeric flex-circuit substrate having an electrically conductive printed wiring pattern and solder pads defined on it. Small photovoltaic cells are affixed to the flex-circuit substrate by back-surface contacts in electrical contact with the solder pads. At least one thermoformable polymeric film is joined to the flex-circuit substrate. Each said solder pad comprises a solder composition that, after an initial melt, has a melting point that lies above at least a portion of the temperature range for thermoforming the polymeric film.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: January 10, 2023
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Jeffrey S. Nelson, Michael Hibbs, Gregory N. Nielson, Murat Okandan, Jose Luis Cruz-Campa, Paul J. Resnick, Carlos Anthony Sanchez, Vipin P. Gupta, Peggy J. Clews
  • Publication number: 20220262973
    Abstract: Method and apparatus for annealing micro-scale or macro solar cells that can contain lithium or hydrogen. Heaters, a current that is applied in forward or reverse direction, or open-circuiting the cells are used optionally with a laser or other light source to increase the temperature of the cells to perform periodic anneals to recover energy conversion efficiency lost due to environmental conditions such as radiation damage and maintain desired operational conditions. Larger amounts of additional energy are harvested with the improved efficiency of the cells. Illuminating the cells with specific wavelengths of light can enhance the diffusion of the lithium or hydrogen, or their binding and unbinding from dopants or defects, in the silicon lattice. The lithium or hydrogen can diffuse into the cells via their inclusion in the polysilicon layer forming a tunneling oxide passivated contact. Dopants in the silicon can reduce annealing time and temperature.
    Type: Application
    Filed: April 29, 2022
    Publication date: August 18, 2022
    Applicant: mPower Technology, Inc.
    Inventor: Murat Okandan
  • Patent number: 10914848
    Abstract: Radiation detectors and methods of use thereof that produce more accurate results. A region of the radiation detector is covered by a conversion layer. A reference region is covered by a light barrier material such as a metal, and not the conversion layer. The reference region incurs less radiation damage than the region under the conversion layer. The dark current produced by the reference region can be used to more accurately calibrate the detector, provide real time normalization of the current produced by the conversion layer region, and determine when the detector has been damaged sufficiently to be replaced.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: February 9, 2021
    Assignee: mPower Technology, Inc.
    Inventor: Murat Okandan
  • Patent number: 10892372
    Abstract: High performance single crystal silicon cells and arrays thereof are manufactured using a rapid process flow. Tunneling junctions formed in the process provide performance benefits, such as higher efficiency and a lower power temperature coefficient. The process generates a large array of interconnected high performance cells smaller than typical cells without requiring additional process steps, and simplifies integration of these coupons into the final product. The cells can have different shapes, sizes, and orientations, enabling the array to be flexible in any desired direction. Higher efficiencies and lower hot spotting under shading is achieved by connecting small low current, high voltage cells in dense series and parallel configurations. Low current cells also require much less metallization than typical solar cells and arrays.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: January 12, 2021
    Assignee: mPower Technology, Inc.
    Inventors: Murat Okandan, Jose Luis Cruz-Campa
  • Publication number: 20200350745
    Abstract: A laser array (100) is described herein, wherein the laser array comprises semiconductor lasers (102, 104) that are precisely controlled such that an optical beam output by the laser array has desired shape and direction.
    Type: Application
    Filed: November 16, 2018
    Publication date: November 5, 2020
    Inventor: Murat Okandan
  • Publication number: 20200035853
    Abstract: Method and apparatus for annealing micro-scale or macro solar cells that can contain lithium. Heaters, a current that is applied in forward or reverse direction, or open-circuiting the cells are used optionally with a laser or other light source to increase the temperature of the cells to perform periodic anneals to recover energy conversion efficiency lost due to environmental conditions such as radiation damage and maintain desired operational conditions. While a small amount of energy is used for heating up the small thermal mass of the micro-cells and macro cells to the desired annealing temperature, much larger amounts of additional energy is harvested with the improved efficiency of the cells. Maintaining a desired temperature for operation of cells takes very little energy owing to the small thermal mass of the cells and controlled thermal conduction of the materials in contact with the cells.
    Type: Application
    Filed: July 30, 2019
    Publication date: January 30, 2020
    Inventors: Murat Okandan, Kaveh Rouhani
  • Patent number: 10483316
    Abstract: Curved, flexible arrays of radiation detectors are formed by using standard silicon semiconductor processing materials and techniques and additional functionalization through integration of conversion and shielding materials. The resulting flexible arrays can be handled, integrated, further functionalized and deployed for a wide variety of applications where conventional sensors do not provide the desired functionality, form factors and/or reliability. The arrays can be stacked and include multiple types and thicknesses of conversion layers, enabling the detector to simultaneously detect multiple radiation types, and perform complex, simultaneous functions such as energy discrimination, spectroscopy, directionality detection, and particle trajectory tracking of incident radiation.
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: November 19, 2019
    Assignee: mPower Technology, Inc.
    Inventors: Murat Okandan, Markku Juhani Koskelo
  • Patent number: 10304977
    Abstract: A method, system and apparatus including a device cell having a top side, a bottom side and opposing side walls. A passivation layer is formed along the top side, the bottom side and opposing side walls of the device cell. The passivation layer serves to passivate the device cell and facilitate carrier collection around the device cell. An anti-reflective layer is formed over the passivation layer and an optical layer is formed on the top side of the device cell. The optical layer reflects light within the device cell. The apparatus may further include a reflective layer formed along the bottom side of the device cell, the reflective layer to reflect light internally within the device cell.
    Type: Grant
    Filed: May 11, 2015
    Date of Patent: May 28, 2019
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Murat Okandan, Gregory N. Nielson, Jose Luis Cruz-Campa, Paul J. Resnick, Carlos Anthony Sanchez
  • Patent number: 10243095
    Abstract: A method is provided for making a molded photovoltaic module. The module includes a flexible polymeric flex-circuit substrate having an electrically conductive printed wiring pattern and solder pads defined on it. Small photovoltaic cells are affixed to the flex-circuit substrate by back-surface contacts in electrical contact with the solder pads. At least one thermoformable polymeric film is joined to the flex-circuit substrate. Each said solder pad comprises a solder composition that, after an initial melt, has a melting point that lies above at least a portion of the temperature range for thermoforming the polymeric film.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: March 26, 2019
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Jeffrey S. Nelson, Michael Hibbs, Gregory N. Nielson, Murat Okandan, Jose Luis Cruz-Campa, Paul J. Resnick, Carlos Anthony Sanchez, Vipin P. Gupta, Peggy J. Clews
  • Publication number: 20180323324
    Abstract: A moldable photovoltaic module is provided. The module includes a flexible polymeric flex-circuit substrate having an electrically conductive printed wiring pattern and solder pads defined on it. Small photovoltaic cells are affixed to the flex-circuit substrate by back-surface contacts in electrical contact with the solder pads. At least one thermoformable polymeric film is joined to the flex-circuit substrate. Each said solder pad comprises a solder composition that, after an initial melt, has a melting point that lies above at least a portion of the temperature range for thermoforming the polymeric film.
    Type: Application
    Filed: July 19, 2018
    Publication date: November 8, 2018
    Inventors: Jeffrey S. Nelson, Michael Hibbs, Gregory N. Nielson, Murat Okandan, Jose Luis Cruz-Campa, Paul J. Resnick, Carlos Anthony Sanchez, Vipin P. Gupta, Peggy J. Clews
  • Publication number: 20180323325
    Abstract: A method is provided for making a molded photovoltaic module. The module includes a flexible polymeric flex-circuit substrate having an electrically conductive printed wiring pattern and solder pads defined on it. Small photovoltaic cells are affixed to the flex-circuit substrate by back-surface contacts in electrical contact with the solder pads. At least one thermoformable polymeric film is joined to the flex-circuit substrate. Each said solder pad comprises a solder composition that, after an initial melt, has a melting point that lies above at least a portion of the temperature range for thermoforming the polymeric film.
    Type: Application
    Filed: July 19, 2018
    Publication date: November 8, 2018
    Inventors: Jeffrey S. Nelson, Michael Hibbs, Gregory N. Nielson, Murat Okandan, Jose Luis Cruz-Campa, Paul J. Resnick, Carlos Anthony Sanchez, Vipin P. Gupta, Peggy J. Clews
  • Patent number: 10038113
    Abstract: A moldable photovoltaic module is provided. The module includes a flexible polymeric flex-circuit substrate having an electrically conductive printed wiring pattern and solder pads defined on it. Small photovoltaic cells are affixed to the flex-circuit substrate by back-surface contacts in electrical contact with the solder pads. At least one thermoformable polymeric film is joined to the flex-circuit substrate. Each said solder pad comprises a solder composition that, after an initial melt, has a melting point that lies above at least a portion of the temperature range for thermoforming the polymeric film.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: July 31, 2018
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Jeffrey S. Nelson, Michael Hibbs, Gregory N. Nielson, Murat Okandan, Jose Luis Cruz-Campa, Paul J. Resnick, Carlos Anthony Sanchez, Vipin P. Gupta, Peggy J. Clews
  • Publication number: 20180166598
    Abstract: High performance single crystal silicon cells and arrays thereof are manufactured using a rapid process flow. Tunneling junctions formed in the process provide performance benefits, such as higher efficiency and a lower power temperature coefficient. The process generates a large array of interconnected high performance cells smaller than typical cells without requiring additional process steps, and simplifies integration of these coupons into the final product. The cells can have different shapes, sizes, and orientations, enabling the array to be flexible in any desired direction. Higher efficiencies and lower hot spotting under shading is achieved by connecting small low current, high voltage cells in dense series and parallel configurations. Low current cells also require much less metallization than typical solar cells and arrays.
    Type: Application
    Filed: December 11, 2017
    Publication date: June 14, 2018
    Applicant: mPower Technology, Inc.
    Inventors: Murat Okandan, Jose Luis Cruz-Campa
  • Patent number: 9978895
    Abstract: An apparatus, method, and system, the apparatus and system including a flexible microsystems enabled microelectronic device package including a microelectronic device positioned on a substrate; an encapsulation layer encapsulating the microelectronic device and the substrate; a protective layer positioned around the encapsulating layer; and a reinforcing layer coupled to the protective layer, wherein the substrate, encapsulation layer, protective layer and reinforcing layer form a flexible and optically transparent package around the microelectronic device. The method including encapsulating a microelectronic device positioned on a substrate within an encapsulation layer; sealing the encapsulated microelectronic device within a protective layer; and coupling the protective layer to a reinforcing layer, wherein the substrate, encapsulation layer, protective layer and reinforcing layer form a flexible and optically transparent package around the microelectronic device.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: May 22, 2018
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Benjamin John Anderson, Gregory N. Nielson, Jose Luis Cruz-Campa, Murat Okandan, Anthony L. Lentine, Paul J. Resnick
  • Patent number: 9972736
    Abstract: An apparatus, method, and system, the apparatus including a receiving member dimensioned to receive an array of microelectronic devices; and a linkage member coupled to the receiving member, the linkage member configured to move the receiving member in at least two dimensions so as to modify a spacing between the electronic devices within the array of microelectronic devices received by the receiving member. The method including coupling an array of microelectronic devices to an expansion assembly; and expanding the expansion assembly so as to expand the array of microelectronic devices in at least two directions within a single plane. The system including a support member; an expansion assembly coupled to the support member, the expansion assembly having a plurality of receiving members configured to move in at least two dimensions within a single plane; and a plurality of microelectronic devices coupled to each of the plurality of receiving members.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: May 15, 2018
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Jeffrey P. Koplow, Vipin P. Gupta, Gregory N. Nielson, Murat Okandan, Jose Luis Cruz-Campa, Jeffrey S. Nelson
  • Patent number: 9907496
    Abstract: The present invention relates to a biological probe structure, as well as apparatuses, systems, and methods employing this structure. In particular embodiments, the structure includes a hermetically sealed unit configured to receive and transmit one or more optical signals. Furthermore, the structure can be implanted subcutaneously and interrogated externally. In this manner, a minimally invasive method can be employed to detect, treat, and/or assess the biological target. Additional methods and systems are also provided.
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: March 6, 2018
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Murat Okandan, Gregory N. Nielson
  • Patent number: 9911871
    Abstract: A photovoltaic module includes colorized reflective photovoltaic cells that act as pixels. The colorized reflective photovoltaic cells are arranged so that reflections from the photovoltaic cells or pixels visually combine into an image on the photovoltaic module. The colorized photovoltaic cell or pixel is composed of a set of 100 to 256 base color sub-pixel reflective segments or sub-pixels. The color of each pixel is determined by the combination of base color sub-pixels forming the pixel. As a result, each pixel can have a wide variety of colors using a set of base colors, which are created, from sub-pixel reflective segments having standard film thicknesses.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: March 6, 2018
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Anthony L. Lentine, Gregory N. Nielson, Jose Luis Cruz-Campa, Murat Okandan, Ronald S. Goeke
  • Patent number: 9831369
    Abstract: A photovoltaic power generation system that includes a solar panel is described herein. The solar panel includes a photovoltaic sub-module, which includes a group of microsystem enabled photovoltaic cells. The group includes a first string of photovoltaic cells, a second string of photovoltaic cells, and a differing photovoltaic cell. Photovoltaic cells in the first string are electrically connected in series, and photovoltaic cells in the second string are electrically connected in series. Further, the first string of photovoltaic cells, the second string of photovoltaic cells, and the differing photovoltaic cell are electrically connected in parallel. Moreover, the differing photovoltaic cell is used as a bypass diode for the first string of photovoltaic cells and the second string of photovoltaic cells.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: November 28, 2017
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Anthony L. Lentine, Gregory N. Nielson, Anna Tauke-Pedretti, Jose Luis Cruz-Campa, Murat Okandan