Patents by Inventor Murray Reed

Murray Reed has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220390566
    Abstract: An optical assembly for a laser projection and return laser light detection device comprises a housing; a first series of components arranged in the housing to define an exit path for laser radiation entering from a laser source and then exiting from the housing; a second series of components arranged in the housing to define a return path for scattered returns of the laser radiation entering the housing and passing to a detector; a polarising beam splitter/combiner common to the exit path and the return path arranged to polarise laser light exiting from the housing and to separate scattered laser light returned to the assembly, that is orthogonally polarised to the exiting laser radiation. The polarising beam splitter/combiner forms a window to the housing.
    Type: Application
    Filed: May 12, 2022
    Publication date: December 8, 2022
    Applicant: QLM Technology Limited
    Inventors: Xiao Ai, James Titchener, Murray Reed, Alexander Dunning
  • Publication number: 20060171036
    Abstract: An optical pulse extender includes a delay loop formed by a plurality of mirrors and a graded reflectivity beamsplitter. The mirrors and the beamsplitter are configured and aligned such that a pulse to be broadened makes a predetermined number of round trips in the delay loop and is incident on a different zone of the beamsplitter after each round trip. The different zones of the beamsplitter have different reflection values and different transmission values. These values are selected such that the pulse extender delivers a plurality of temporally and spatially separated replica pulses each thereof having about the same energy. The delivered replica pulses together provide an extended pulse having a longer duration than the input pulse. The replica pulses may be passed through a beam homogenizer to spatially homogenize the temporal characteristics of the extended pulse.
    Type: Application
    Filed: March 31, 2006
    Publication date: August 3, 2006
    Inventors: Sergei Govorkov, Luis Spinelli, William White, Murray Reed
  • Publication number: 20060125969
    Abstract: A projection video display includes a light source including an OPS-laser delivering laser radiation in multiple transverse modes (a multiple-transverse-mode OPS-laser). The display includes a spatial light modulator for spatially modulating the radiation from the multiple-transverse-mode OPS-laser in accordance with a portion of an image to be displayed. Projection optics project the spatially modulated light on a screen on which the image is to be displayed. In one example the OPS-laser is a diode-laser array pumped OPS-laser and is one of three lasers, one delivering red light, one delivering blue light, and the other delivering green light. The lasers are time modulated such that the spatial light modulator receives light from each of the lasers separately. The OPS laser is directly time modulated by periodically turning the diode-laser array on and off.
    Type: Application
    Filed: December 14, 2004
    Publication date: June 15, 2006
    Inventors: Juan Chilla, Sergei Govorkov, Andrea Caprara, Murray Reed, Luis Spinelli
  • Publication number: 20060126022
    Abstract: A projection video display includes at least one laser for delivering a light beam. The display includes a beam homogenizer and a condenser lens. A scanning arrangement is provided for scanning the light in beam in a particular pattern over the condenser lens in a manner that effectively increases the beam divergence. The scanned beam is homogenized by a beam homogenizer and a spatial light modulator is arranged to receive the homogenized scanned light beam and spatially modulate the beam in accordance with a component of an image to be displayed. Projection optics are projecting the homogenized scanned light beam onto a screen. The scanning provides that the homogenized scanned light beam at the screen has a coherence radius less than the original coherence radius of the beam. The reduced coherence radius contributes to minimizing speckle contrast in the image displayed on the screen.
    Type: Application
    Filed: December 14, 2004
    Publication date: June 15, 2006
    Inventors: Sergei Govorkov, Luis Spinelli, Juan Chilla, Andrea Caprara, Murray Reed
  • Publication number: 20050207454
    Abstract: A fiber laser including doped-core fiber having inner and outer cladding is optically pumped by plurality of diode-lasers. Light emitted by the diode-lasers is coupled into a single multimode optical fiber. Light from the multimode optical fiber is directed to a wavelength selective reflecting device that is partially reflective in a narrow reflection band about a peak reflection wavelength. A portion of the light having the peak reflection wavelength is reflected from the wavelength selective reflecting device back along the multimode optical fiber and back into the plurality of diode-lasers. This locks the emitting wavelength of the light emitted from each of the diode-lasers to the peak reflection wavelength. Light at the emitting wavelength that is not reflected from the wavelength selective reflective device is coupled into the inner cladding of the doped-core fiber for optically pumping the fiber laser.
    Type: Application
    Filed: March 16, 2004
    Publication date: September 22, 2005
    Inventors: Andrei Starodoumov, Murray Reed
  • Publication number: 20050190810
    Abstract: An optically pumped semiconductor (OPS) structure includes a multilayer gain-structure surmounting a mirror structure. One surface of a diamond heat spreader is attached to the mirror structure via a contact bond. The opposite surface of the heat spreader is bonded to a metal heat sink. In one example, the OPS-structure also has a diamond window contact bonded to the gain-structure.
    Type: Application
    Filed: February 27, 2004
    Publication date: September 1, 2005
    Inventors: Stuart Butterworth, Murray Reed, Dennis Fischer
  • Publication number: 20050190452
    Abstract: An optical pulse extender includes a delay loop formed by a plurality of mirrors and a graded reflectivity beamsplitter. The mirrors and the beamsplitter are configured and aligned such that a pulse to be broadened makes a predetermined number of round trips in the delay loop and is incident on a different zone of the beamsplitter after each round trip. The different zones of the beamsplitter have different reflection values and different transmission values. These values are selected such that the pulse extender delivers a plurality of temporally and spatially separated replica pulses each thereof having about the same energy. The delivered replica pulses together provide an extended pulse having a longer duration than the input pulse. The replica pulses may be passed through a beam homogenizer to spatially homogenize the temporal characteristics of the extended pulse.
    Type: Application
    Filed: March 1, 2004
    Publication date: September 1, 2005
    Inventors: Sergei Govorkov, Luis Spinelli, William White, Murray Reed
  • Patent number: 6788726
    Abstract: A laser apparatus and method that provide for suppression of source spontaneous emission (SSE) and amplified spontaneous emission (ASE) light in laser output with minimal intracavity loss. The apparatus comprises a gain medium emitting a light beam, a wavelength element positioned in the light beam, and a non-reciprocal pickoff positioned in the light beam between the gain medium and wavelength element. The non-reciprocal pickoff may comprise a polarization-dependent beam splitter and a non-reciprocal polarization rotator positioned in the light beam before the wavelength selection element. The non-reciprocal pickoff may further comprise a reciprocal polarization rotator positioned in the light beam after the polarization-dependent beam splitter.
    Type: Grant
    Filed: February 26, 2002
    Date of Patent: September 7, 2004
    Assignee: New Focus, Inc.
    Inventors: Guangzhi Z. Zhang, Carter F. Hand, Alejandro D. Farinas, Murray Reed
  • Patent number: 6608847
    Abstract: A laser apparatus and method with compact cavity design that provides suppression of source spontaneous emission (SSE) and amplified spontaneous emission (ASE) light with minimal loss. The laser comprises a gain medium emitting a light beam along an optical path, a tuning element positioned in the optical path and configured feed back light of a selected wavelength to the gain medium and configured to define a first output beam directed along a first output path, a partial reflector located in the optical path and positioned to create a second output beam directed along a second output path substantially parallel to the first output path; and having a spontaneous emission component that is spatially separated from the selected wavelength. The second output beam can be coupled into optical fiber and produce a coherent light source with high spectral purity and tunable wavelengths.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: August 19, 2003
    Assignee: New Focus, Inc.
    Inventors: Guangzhi Z. Zhang, Andrew Davidson, David Robinson, Carter Hand, Mark Wippich, Murray Reed, Weizhi Wang
  • Publication number: 20030063633
    Abstract: A laser apparatus and method with compact cavity design that provides suppression of source spontaneous emission (SSE) and amplified spontaneous emission (ASE) light with minimal loss. The laser comprises a gain medium emitting a light beam along an optical path, a tuning element positioned in the optical path and configured feed back light of a selected wavelength to the gain medium and configured to define a first output beam directed along a first output path, a partial reflector located in the optical path and positioned to create a second output beam directed along a second output path substantially parallel to the first output path; and having a spontaneous emission component that is spatially separated from the selected wavelength. The second output beam can be coupled into optical fiber and produce a coherent light source with high spectral purity and tunable wavelengths.
    Type: Application
    Filed: September 28, 2001
    Publication date: April 3, 2003
    Inventors: Guangzhi Z. Zhang, Andrew Davidson, David Robinson, Carter Hand, Mark Wippich, Murray Reed, Weizhi Wang