Patents by Inventor Myriam Kaiser

Myriam Kaiser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11992897
    Abstract: An apparatus for laser machining a workpiece in a machining plane includes a first laser machining unit for forming a first focal zone which extends in a first main direction of extent, and at least one further laser machining unit for forming at least one further focal zone which extends in a further main direction of extent oriented transversely to the first main direction of extent. The first focal zone and the at least one further focal zone are spaced apart from one another parallel to the machining plane at a work distance. The first laser machining unit and the at least one further laser machining unit are movable in an advancement direction that is oriented parallel to the machining plane. The workpiece comprises a material that is transparent to a laser beam which respectively forms the first focal zone and the at least one further focal zone.
    Type: Grant
    Filed: August 1, 2023
    Date of Patent: May 28, 2024
    Assignee: TRUMPF LASER-UND SYSTEMTECHNIK GMBH
    Inventors: Tim Hesse, Daniel Flamm, Myriam Kaiser
  • Publication number: 20240165737
    Abstract: A method for laser processing a workpiece is provided. The workpiece includes a material transparent to a laser beam of the laser processing. The method includes splitting an input laser beam by using a beam splitter into a plurality of partial beams. The splitting of the input laser beam is performed by application of phases to a beam cross section of the input laser beam. The method further includes focusing the plurality of partial beams decoupled from the beam splitter by using a focusing optical unit. Multiple focus elements are formed by the focusing of the plurality of partial beams. The method further includes subjecting the material of the workpiece to at least a subset of the multiple focus elements. The application of the phases is performed in such a way that at least two of the multiple focus elements have different intensities.
    Type: Application
    Filed: January 25, 2024
    Publication date: May 23, 2024
    Inventors: Daniel Flamm, Myriam Kaiser, Jonas Kleiner
  • Publication number: 20240017352
    Abstract: An apparatus for laser machining a workpiece in a machining plane includes a first laser machining unit for forming a first focal zone which extends in a first main direction of extent, and at least one further laser machining unit for forming at least one further focal zone which extends in a further main direction of extent oriented transversely to the first main direction of extent. The first focal zone and the at least one further focal zone are spaced apart from one another parallel to the machining plane at a work distance. The first laser machining unit and the at least one further laser machining unit are movable in an advancement direction that is oriented parallel to the machining plane. The workpiece comprises a material that is transparent to a laser beam which respectively forms the first focal zone and the at least one further focal zone.
    Type: Application
    Filed: August 1, 2023
    Publication date: January 18, 2024
    Inventors: Tim Hesse, Daniel Flamm, Myriam Kaiser
  • Publication number: 20240017357
    Abstract: An apparatus for laser machining a workpiece with a material transparent to the laser machining includes a first beam shaping device with a beam splitting element for splitting a first input beam into a plurality of component beams, and a focusing optical unit configured to image the plurality of component beams into at least one focal zone. The first input beam is split by the beam splitting element by phase imposition on the first input beam. The component beams are focused into different partial regions of the at least one focal zone for forming the at least one focal zone. The at least one focal zone is introduced by the focusing optical unit into the material for laser machining the workpiece. Material modifications associated with a crack formation in the material are produced in the material by exposing the material to the at least one focal zone.
    Type: Application
    Filed: July 28, 2023
    Publication date: January 18, 2024
    Inventors: Myriam Kaiser, Daniel Flamm, Jonas Kleiner
  • Publication number: 20240009764
    Abstract: An apparatus for laser machining a workpiece includes a first beam shaping device comprising a beam splitting element for splitting a first input beam into a plurality of component beams, and a focusing optical unit configured to image the component beams into at least one focal zone. The first input beam is split by the beam splitting element by phase imposition on the first input beam. The component beams are focused into different partial regions of the at least one focal zone for forming the at least one focal zone. The at least one focal zone is introduced into the material at a work angle with respect to an outer side of the workpiece for the laser machining of the workpiece. Material modifications associated with a change of a refractive index of the material are produced in the material by exposing the material to the at least one focal zone.
    Type: Application
    Filed: August 1, 2023
    Publication date: January 11, 2024
    Inventors: Myriam Kaiser, Daniel Flamm, Felix Zimmermann, Jonas Kleiner
  • Publication number: 20230356331
    Abstract: A method for separating a workpiece having a transparent material includes providing ultrashort laser pulses using an ultrashort pulse laser, introducing material modifications into the transparent material of the workpiece along a separation line, and separating the material of the workpiece along the separation line. The laser pulses form a laser beam that is incident onto the workpiece at a work angle. The material modifications are Type III modifications associated with a formation of cracks in the material of the workpiece. The material modifications penetrate two sides of the workpiece that are located in intersecting planes. Separating the material of the workpiece produces a chamfer and/or a bevel. A length of a hypotenuse of the chamfer and/or bevel is between 50 ?m and 5000 ?m.
    Type: Application
    Filed: June 16, 2023
    Publication date: November 9, 2023
    Inventors: Daniel Flamm, Jonas Kleiner, Myriam Kaiser
  • Publication number: 20230347451
    Abstract: A method for separating a workpiece having a transparent material includes providing ultrashort laser pulses using an ultrashort pulse laser, introducing material modifications into the transparent material of the workpiece along a separation line using the laser pulses, and separating the material of the workpiece along the separation line. The laser pulses form a laser beam that is incident onto the workpiece at a work angle. The material modifications are Type I and/or Type II modifications associated with a change in a refractive index of the material of the workpiece. The material modifications penetrate two sides of the workpiece that are located in intersecting planes. Separating the material of the workpiece produces a chamfer and/or a bevel. A length of a hypotenuse of the chamfer and/or bevel is between 50 ?m and 500 ?m.
    Type: Application
    Filed: June 16, 2023
    Publication date: November 2, 2023
    Inventors: Daniel Flamm, Jonas Kleiner, Myriam Kaiser, Felix Zimmermann
  • Patent number: 11780033
    Abstract: For material processing of a material, which is in particular for a laser beam to a large extent transparent, asymmetric shaped modifications are created transverse to the propagation direction of the laser beam. Thereby, the laser beam is shaped for forming an elongated focus zone in the material, wherein the focus zone is such that it includes at least one intensity maximum, which is transverse flattened in a flattening direction, or a transverse and/or axial sequence of asymmetric intensity maxima, which are flattened in a sequence direction. After positioning the focus zone in the material, a modification is created and the material and the focus zone are moved relative to each other in the or across to the flattening direction or in the or across to the sequence direction for forming a crack along an induced preferred direction.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: October 10, 2023
    Assignee: TRUMPF Laser- und Systemtechnik GmbH
    Inventors: Malte Kumkar, Jonas Kleiner, Daniel Grossmann, Daniel Flamm, Myriam Kaiser
  • Publication number: 20230302574
    Abstract: A method for severing an at least partially transparent material includes focusing ultrashort laser pulses, as individual laser pulses and/or as pulse trains, in the material so that a resulting modification zone elongated in a beam propagation direction enters the material and penetrates at least one surface of the material. Each pulse train comprises multiple sub-laser pulses, The method further includes introducing a plurality of material modifications along a severing line into the material via the laser pulses, and severing the material along the severing line, A pulse energy of the individual laser pulses or a sum of pulse energies of the sub-laser pulses is in a range from 500 ?J to 50 mJ. A length of the modification zone in the beam propagation direction is greater than a thickness of the material.
    Type: Application
    Filed: June 2, 2023
    Publication date: September 28, 2023
    Inventors: Jonas Kleiner, Daniel Flamm, Tim Hesse, Malte Kumkar, Myriam Kaiser
  • Publication number: 20230271872
    Abstract: A method for separating an ultrathin glass using ultrashort laser pulses of an ultrashort pulse laser includes focusing the ultrashort laser pulses into the ultrathin glass such that a resulting focal zone is elongated in a beam direction and extends over an entire thickness of the ultrathin glass. The ultrashort laser pulses have a non-radially symmetric beam cross section perpendicular to a beam propagation direction. The method further includes introducing material modifications into the ultrathin glass along a separating line using the ultrashort laser pulses focused into the ultrathin glass, and separating the ultrathin glass along the separating line.
    Type: Application
    Filed: March 10, 2023
    Publication date: August 31, 2023
    Inventors: Jonas Kleiner, Daniel Flamm, Marcel Schaefer, Myriam Kaiser, Michael Jenne
  • Publication number: 20220226932
    Abstract: A method for selective laser-induced etching of a microhole into a workpiece includes creating a modification in the workpiece that extends from an entrance side to an exit side of the workpiece. The modification is created by a laser pulse that has an annular transverse intensity distribution. The modification delimites a cylindrical body from a residual material surrounding the modification. The method further includes introducing the workpiece with the modification into a wet-chemical etching bath for structurally separating the cylindrical body from the residual material.
    Type: Application
    Filed: April 4, 2022
    Publication date: July 21, 2022
    Inventors: Jonas Kleiner, Daniel Flamm, Myriam Kaiser
  • Publication number: 20220184744
    Abstract: The present invention relates to a method for machining a workpiece, comprising the steps of introducing a plurality of adjacent modifications into the material of the workpiece by means of laser radiation, etching the material of the workpiece in a first etching operation with a first selectivity, in order to remove predominantly the material modified by the laser radiation, and, after completion of the first etching operation, etching the material of the workpiece in a second etching operation with a second selectivity, different from the first selectivity, in order to remove the webs left between the removed modified material.
    Type: Application
    Filed: February 11, 2022
    Publication date: June 16, 2022
    Inventors: Malte Kumkar, Myriam Kaiser
  • Publication number: 20210170530
    Abstract: For material processing of a material, which is in particular for a laser beam to a large extent transparent, asymmetric shaped modifications are created transverse to the propagation direction of the laser beam. Thereby, the laser beam is shaped for forming an elongated focus zone in the material, wherein the focus zone is such that it includes at least one intensity maximum, which is transverse flattened in a flattening direction, or a transverse and/or axial sequence of asymmetric intensity maxima, which are flattened in a sequence direction. After positioning the focus zone in the material, a modification is created and the material and the focus zone are moved relative to each other in the or across to the flattening direction or in the or across to the sequence direction for forming a crack along an induced preferred direction.
    Type: Application
    Filed: December 18, 2020
    Publication date: June 10, 2021
    Inventors: Malte Kumkar, Jonas Kleiner, Daniel Grossmann, Daniel Flamm, Myriam Kaiser
  • Patent number: 10882143
    Abstract: For material processing of a material, which is in particular for a laser beam to a large extent transparent, asymmetric shaped modifications are created transverse to the propagation direction of the laser beam. Thereby, the laser beam is shaped for forming an elongated focus zone in the material, wherein the focus zone is such that it includes at least one intensity maximum, which is transverse flattened in a flattening direction, or a transverse and/or axial sequence of asymmetric intensity maxima, which are flattened in a sequence direction. After positioning the focus zone in the material, a modification is created and the material and the focus zone are moved relative to each other in the or across to the flattening direction or in the or across to the sequence direction for forming a crack along an induced preferred direction.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: January 5, 2021
    Assignee: TRUMPF Laser- und Systemtechnik GmbH
    Inventors: Malte Kumkar, Jonas Kleiner, Daniel Grossmann, Daniel Flamm, Myriam Kaiser
  • Publication number: 20200316711
    Abstract: An optical system for shaping a laser beam includes a beam shaping element configured to receive the laser beam having a transverse input intensity profile and to impose a beam shaping phase distribution onto the laser beam. The optical system further includes a near field optical element, arranged downstream of the beam shaping element at a beam shaping distance and is configured to focus the laser beam into the focus zone. The imposed phase distribution results in a virtual optical image of the elongated focus zone located before the beam shaping element. The beam shaping distance corresponds to a propagation length of the laser beam within which the imposed phase distribution transforms the transverse input intensity profile into a transverse output intensity profile at the near field optical element.
    Type: Application
    Filed: April 24, 2020
    Publication date: October 8, 2020
    Inventors: Malte Kumkar, Jonas Kleiner, Daniel Grossmann, Daniel Flamm, Myriam Kaiser
  • Patent number: 10661384
    Abstract: An optical system for shaping a laser beam includes a beam shaping element configured to receive the laser beam having a transverse input intensity profile and to impose a beam shaping phase distribution onto the laser beam. The optical system further includes a near field optical element, arranged downstream of the beam shaping element at a beam shaping distance and is configured to focus the laser beam into the focus zone. The imposed phase distribution results in a virtual optical image of the elongated focus zone located before the beam shaping element. The beam shaping distance corresponds to a propagation length of the laser beam within which the imposed phase distribution transforms the transverse input intensity profile into a transverse output intensity profile at the near field optical element.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: May 26, 2020
    Assignee: TRUMPF Laser—und Systemtechnik GmbH
    Inventors: Malte Kumkar, Jonas Kleiner, Daniel Grossmann, Daniel Flamm, Myriam Kaiser
  • Publication number: 20170259375
    Abstract: An optical system for shaping a laser beam includes a beam shaping element configured to receive the laser beam having a transverse input intensity profile and to impose a beam shaping phase distribution onto the laser beam. The optical system further includes a near field optical element, arranged downstream of the beam shaping element at a beam shaping distance and is configured to focus the laser beam into the focus zone. The imposed phase distribution results in a virtual optical image of the elongated focus zone located before the beam shaping element. The beam shaping distance corresponds to a propagation length of the laser beam within which the imposed phase distribution transforms the transverse input intensity profile into a transverse output intensity profile at the near field optical element.
    Type: Application
    Filed: May 18, 2017
    Publication date: September 14, 2017
    Inventors: Malte Kumkar, Jonas Kleiner, Daniel Grossmann, Daniel Flamm, Myriam Kaiser
  • Publication number: 20170252859
    Abstract: For material processing of a material, which is in particular for a laser beam to a large extent transparent, asymmetric shaped modifications are created transverse to the propagation direction of the laser beam. Thereby, the laser beam is shaped for forming an elongated focus zone in the material, wherein the focus zone is such that it includes at least one intensity maximum, which is transverse flattened in a flattening direction, or a transverse and/or axial sequence of asymmetric intensity maxima, which are flattened in a sequence direction. After positioning the focus zone in the material, a modification is created and the material and the focus zone are moved relative to each other in the or across to the flattening direction or in the or across to the sequence direction for forming a crack along an induced preferred direction.
    Type: Application
    Filed: May 19, 2017
    Publication date: September 7, 2017
    Inventors: Malte Kumkar, Jonas Kleiner, Daniel Grossmann, Daniel Flamm, Myriam Kaiser