Patents by Inventor Nader Pourmand

Nader Pourmand has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11940410
    Abstract: Disclosed are methods and devices for biomolecular detection, comprising a nanopipette, exemplified as a hollow inert, non-biological structure with a conical tip opening of nanoscale dimensions, suitable for holding an electrolyte solution which may contain an analyte such as a protein biomolecule to be detected as it is passed through the tip opening. Biomolecules are detected by specific reaction with peptide ligands chemically immobilized in the vicinity of the tip. Analytes which bind to the ligands cause a detectible change in ionic current. A sensitive detection circuit, using a feedback amplifier circuit, and alternating voltages is further disclosed. Detection of IL-10 at a concentration of 4 ng/ml is also disclosed, as is detection of VEGF.
    Type: Grant
    Filed: January 18, 2022
    Date of Patent: March 26, 2024
    Assignee: The Regents of the University of California
    Inventors: Miloslav Karhanek, Chris David Webb, Senkei Umehara, Nader Pourmand
  • Patent number: 11709148
    Abstract: Disclosed are methods and devices for detection of ion migration and binding, utilizing a nanopipette adapted for use in an electrochemical sensing circuit. The nanopipette may be functionalized on its interior bore with metal chelators for binding and sensing metal ions or other specific binding molecules such as boronic acid for binding and sensing glucose. Such a functionalized nanopipette is comprised in an electrical sensor that detects when the nanopipette selectively and reversibly binds ions or small molecules. Also disclosed is a nanoreactor, comprising a nanopipette, for controlling precipitation in aqueous solutions by voltage-directed ion migration, wherein ions may be directed out of the interior bore by a repulsing charge in the bore.
    Type: Grant
    Filed: December 21, 2021
    Date of Patent: July 25, 2023
    Assignee: The Regents of the University of California
    Inventors: Nader Pourmand, Boaz Vilozny, Paolo Actis, R. Adam Seger
  • Publication number: 20220260520
    Abstract: Disclosed are methods and devices for biomolecular detection, comprising a nanopipette, exemplified as a hollow inert, non-biological structure with a conical tip opening of nanoscale dimensions, suitable for holding an electrolyte solution which may contain an analyte such as a protein biomolecule to be detected as it is passed through the tip opening. Biomolecules are detected by specific reaction with peptide ligands chemically immobilized in the vicinity of the tip. Analytes which bind to the ligands cause a detectible change in ionic current. A sensitive detection circuit, using a feedback amplifier circuit, and alternating voltages is further disclosed. Detection of IL-10 at a concentration of 4 ng/ml is also disclosed, as is detection of VEGF.
    Type: Application
    Filed: January 18, 2022
    Publication date: August 18, 2022
    Inventors: Miloslav Karhanek, Chris David Webb, Senkei Umehara, Nader Pourmand
  • Publication number: 20220229014
    Abstract: Disclosed are methods and devices for detection of ion migration and binding, utilizing a nanopipette adapted for use in an electrochemical sensing circuit. The nanopipette may be functionalized on its interior bore with metal chelators for binding and sensing metal ions or other specific binding molecules such as boronic acid for binding and sensing glucose. Such a functionalized nanopipette is comprised in an electrical sensor that detects when the nanopipette selectively and reversibly binds ions or small molecules. Also disclosed is a nanoreactor, comprising a nanopipette, for controlling precipitation in aqueous solutions by voltage-directed ion migration, wherein ions may be directed out of the interior bore by a repulsing charge in the bore.
    Type: Application
    Filed: December 21, 2021
    Publication date: July 21, 2022
    Inventors: Nader Pourmand, Boaz Vilozny, Paolo Actis, R. Adam Seger
  • Patent number: 11255814
    Abstract: Disclosed are methods and devices for biomolecular detection, comprising a nanopipette, exemplified as a hollow inert, non-biological structure with a conical tip opening of nanoscale dimensions, suitable for holding an electrolyte solution which may contain an analyte such as a protein biomolecule to be detected as it is passed through the tip opening. Biomolecules are detected by specific reaction with peptide ligands chemically immobilized in the vicinity of the tip. Analytes which bind to the ligands cause a detectible change in ionic current. A sensitive detection circuit, using a feedback amplifier circuit, and alternating voltages is further disclosed. Detection of IL-10 at a concentration of 4 ng/ml is also disclosed, as is detection of VEGF.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: February 22, 2022
    Assignee: The Regents of the University of California
    Inventors: Miloslav Karhanek, Chris David Webb, Senkei Umehara, Nader Pourmand
  • Patent number: 11243188
    Abstract: Disclosed are methods and devices for detection of ion migration and binding, utilizing a nanopipette adapted for use in an electrochemical sensing circuit. The nanopipette may be functionalized on its interior bore with metal chelators for binding and sensing metal ions or other specific binding molecules such as boronic acid for binding and sensing glucose. Such a functionalized nanopipette is comprised in an electrical sensor that detects when the nanopipette selectively and reversibly binds ions or small molecules. Also disclosed is a nanoreactor, comprising a nanopipette, for controlling precipitation in aqueous solutions by voltage-directed ion migration, wherein ions may be directed out of the interior bore by a repulsing charge in the bore.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: February 8, 2022
    Assignee: The Regents of the University of California
    Inventors: Nader Pourmand, Boaz Vilozny, Paolo Actis, R. Adam Seger
  • Publication number: 20210230678
    Abstract: Methods and apparatus for direct detection of chemical reactions are provided. Electric charge perturbations of the local environment during enzyme-catalyzed reactions are sensed by an electrode system with an immobilized target molecule. The charge perturbation caused by the polymerase reaction can uniquely identify a DNA sequence. The polymerization process generates local perturbations of charge in the solution near the electrode surface and induces a charge in a polarazible gold electrode. This event is detected as a transient current by a voltage clamp amplifier. Detection of single nucleotides in a sequence can be determined by dispensing individual dNTPs to the electrode solution and detecting the charge perturbations. Alternatively, multiple bases can be determined at the same time using a mix of all dNTPs with subsequent analysis of the resulting signal.
    Type: Application
    Filed: November 2, 2020
    Publication date: July 29, 2021
    Inventors: Nader Pourmand, Miloslav Karhanek, Ronald W. Davis
  • Publication number: 20210041426
    Abstract: Provided are methods for simultaneously detecting analytes. The methods include exposing a tip of a nanosensor to a biological sample, measuring ionic current flow through the nanosensor tip to detect a first analyte and a second analyte in the biological sample, and distinguishing the first analyte from the second analyte based on a first diffusion limited current peak resulting from binding of a first specific binding member to the first analyte being distinguishable from a second diffusion limited current peak resulting from binding of a second specific binding member to the second analyte. Sensing apparatuses that find use, e.g., in practicing the methods of the present disclosure, are also provided.
    Type: Application
    Filed: February 11, 2019
    Publication date: February 11, 2021
    Inventor: Nader Pourmand
  • Patent number: 10822641
    Abstract: Methods and apparatus for direct detection of chemical reactions are provided. Electric charge perturbations of the local environment during enzyme-catalyzed reactions are sensed by an electrode system with an immobilized target molecule. The charge perturbation caused by the polymerase reaction can uniquely identify a DNA sequence. The polymerization process generates local perturbations of charge in the solution near the electrode surface and induces a charge in a polarazible gold electrode. This event is detected as a transient current by a voltage clamp amplifier. Detection of single nucleotides in a sequence can be determined by dispensing individual dNTPs to the electrode solution and detecting the charge perturbations. Alternatively, multiple bases can be determined at the same time using a mix of all dNTPs with subsequent analysis of the resulting signal.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: November 3, 2020
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Nader Pourmand, Miloslav Karhanek, Ronald W. Davis
  • Patent number: 10809253
    Abstract: Methods for analyte detection with magnetic sensors are provided. Aspects of the methods include producing a magnetic sensor device having a magnetically labeled analyte from a sample, such as a serum sample, bound to a surface of a magnetic sensor thereof; and obtaining a signal, e.g., a real-time signal, from the magnetic sensor to determine whether the analyte is present in the sample. Also provided are devices, systems and kits that find use in practicing the methods of the invention. The methods, devices, systems and kits of the invention find use in a variety of different applications, including detection of biomarkers, such as disease markers.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: October 20, 2020
    Assignees: MagArray, Inc., The Board of Trustees of the Leland Stanford Junior University
    Inventors: Shan Xiang Wang, Sebastian J. Osterfeld, Heng Yu, Nader Pourmand, Robert L. White
  • Patent number: 10696962
    Abstract: Described herein are devices and methods for extracting cellular material from living cells and then depositing them into to a receptacle in a nanoliter scale. Using a nanopipette integrated into a scanning ion conductance microscope (SICM), extraction of mitochondrial DNA from human BJ fibroblasts and Green Fluorescent Protein (GFP) transcripts from HeLa/GFP cells was achieved with minimal disruption to the cellular milieu and without chemical treatment prior to obtaining the isolated sample. Success of the extraction was confirmed by fluorescence microscopy and PCR analysis of the extracted material. The method and apparatus may be applied to many different cell types and intracellular targets, allowing not only single cell analysis, but single subcellular compartment analysis of materials extracted in their native state.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: June 30, 2020
    Assignee: The Regents of the University of California
    Inventors: Paolo Actis, Michelle M. Maalouf, Nader Pourmand
  • Publication number: 20200200704
    Abstract: Disclosed are methods and devices for biomolecular detection, comprising a nanopipette, exemplified as a hollow inert, non-biological structure with a conical tip opening of nanoscale dimensions, suitable for holding an electrolyte solution which may contain an analyte such as a protein biomolecule to be detected as it is passed through the tip opening. Biomolecules are detected by specific reaction with peptide ligands chemically immobilized in the vicinity of the tip. Analytes which bind to the ligands cause a detectible change in ionic current. A sensitive detection circuit, using a feedback amplifier circuit, and alternating voltages is further disclosed. Detection of IL-10 at a concentration of 4 ng/ml is also disclosed, as is detection of VEGF.
    Type: Application
    Filed: March 11, 2019
    Publication date: June 25, 2020
    Inventors: Miloslav Karhanek, Chris David Webb, Senkei Umehara, Nader Pourmand
  • Publication number: 20200182827
    Abstract: Disclosed are methods and devices for biomolecular detection, comprising a nanopipette, exemplified as a hollow inert, non-biological structure with a conical tip opening of nanoscale dimensions, suitable for holding an electrolyte solution which may contain an analyte such as a protein biomolecule to be detected as it is passed through the tip opening. Biomolecules are detected by specific reaction with peptide ligands chemically immobilized in the vicinity of the tip. Analytes which bind to the ligands cause a detectible change in ionic current. A sensitive detection circuit, using a feedback amplifier circuit, and alternating voltages is further disclosed. Detection of IL-10 at a concentration of 4 ng/ml is also disclosed, as is detection of VEGF.
    Type: Application
    Filed: September 30, 2019
    Publication date: June 11, 2020
    Inventors: Miloslav Karhanek, Chris David Webb, Senkei Umehara, Nader Pourmand
  • Patent number: 10513434
    Abstract: Disclosed herein are methods and systems for controlled ejection of desired material onto surfaces including in single cells using nanopipettes, as well as ejection onto and into cells. Some embodiments are directed to a method and system comprising nanopipettes combined with an xyz controller for depositing a user defined pattern on an arbitrary substrate for the purpose of controlled cell adhesion and growth. Alternate embodiments are directed to a method and system comprising nanopipettes combined with an xyz controller and electronic control of a voltage differential in a bore of the nanopipette electroosmotically injecting material into a cell in a high-throughput manner and with minimal damage to the cell. Yet other embodiments are directed to method and system comprising functionalized nanopipettes combined with scanning ion conductance microscopy for studying molecular interactions and detection of biomolecules inside a single living cell.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: December 24, 2019
    Assignee: The Regents of the University of California
    Inventors: R. Adam Seger, Paolo Actis, Boaz Vilozny, Nader Pourmand
  • Publication number: 20190369047
    Abstract: Disclosed are methods and devices for detection of ion migration and binding, utilizing a nanopipette adapted for use in an electrochemical sensing circuit. The nanopipette may be functionalized on its interior bore with metal chelators for binding and sensing metal ions or other specific binding molecules such as boronic acid for binding and sensing glucose. Such a functionalized nanopipette is comprised in an electrical sensor that detects when the nanopipette selectively and reversibly binds ions or small molecules. Also disclosed is a nanoreactor, comprising a nanopipette, for controlling precipitation in aqueous solutions by voltage-directed ion migration, wherein ions may be directed out of the interior bore by a repulsing charge in the bore.
    Type: Application
    Filed: May 24, 2019
    Publication date: December 5, 2019
    Inventors: Nader Pourmand, Boaz Vilozny, Paolo Actis, R. Adam Seger
  • Patent number: 10345260
    Abstract: Disclosed are methods and devices for detection of ion migration and binding, utilizing a nanopipette adapted for use in an electrochemical sensing circuit. The nanopipette may be functionalized on its interior bore with metal chelators for binding and sensing metal ions or other specific binding molecules such as boronic acid for binding and sensing glucose. Such a functionalized nanopipette is comprised in an electrical sensor that detects when the nanopipette selectively and reversibly binds ions or small molecules. Also disclosed is a nanoreactor, comprising a nanopipette, for controlling precipitation in aqueous solutions by voltage-directed ion migration, wherein ions may be directed out of the interior bore by a repulsing charge in the bore.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: July 9, 2019
    Assignee: The Regents of the University of California
    Inventors: Nader Pourmand, Boaz Vilozny, Paolo Actis, R. Adam Seger
  • Publication number: 20180346971
    Abstract: Methods and apparatus for direct detection of chemical reactions are provided. Electric charge perturbations of the local environment during enzyme-catalyzed reactions are sensed by an electrode system with an immobilized target molecule. The charge perturbation caused by the polymerase reaction can uniquely identify a DNA sequence. The polymerization process generates local perturbations of charge in the solution near the electrode surface and induces a charge in a polarazible gold electrode. This event is detected as a transient current by a voltage clamp amplifier. Detection of single nucleotides in a sequence can be determined by dispensing individual dNTPs to the electrode solution and detecting the charge perturbations. Alternatively, multiple bases can be determined at the same time using a mix of all dNTPs with subsequent analysis of the resulting signal.
    Type: Application
    Filed: April 30, 2018
    Publication date: December 6, 2018
    Inventors: Nader Pourmand, Miloslav Karhanek, Ronald W. Davis
  • Publication number: 20180259480
    Abstract: Disclosed are methods and devices for biomolecular detection, comprising a nanopipette, exemplified as a hollow inert, non-biological structure with a conical tip opening of nanoscale dimensions, suitable for holding an electrolyte solution which may contain an analyte such as a protein biomolecule to be detected as it is passed through the tip opening. Biomolecules are detected by specific reaction with peptide ligands chemically immobilized in the vicinity of the tip. Analytes which bind to the ligands cause a detectible change in ionic current. A sensitive detection circuit, using a feedback amplifier circuit, and alternating voltages is further disclosed. Detection of IL-10 at a concentration of 4ng/ml is also disclosed, as is detection of VEGF.
    Type: Application
    Filed: September 6, 2017
    Publication date: September 13, 2018
    Inventors: Miloslav Karhanek, Chris David Webb, Senkei Umehara, Nader Pourmand
  • Publication number: 20180128822
    Abstract: Methods for analyte detection with magnetic sensors are provided. Aspects of the methods include producing a magnetic sensor device having a magnetically labeled analyte from a sample, such as a serum sample, bound to a surface of a magnetic sensor thereof; and obtaining a signal, e.g., a real-time signal, from the magnetic sensor to determine whether the analyte is present in the sample. Also provided are devices, systems and kits that find use in practicing the methods of the invention. The methods, devices, systems and kits of the invention find use in a variety of different applications, including detection of biomarkers, such as disease markers.
    Type: Application
    Filed: December 4, 2017
    Publication date: May 10, 2018
    Inventors: Shan Xiang Wang, Sebastian J. Osterfeld, Heng Yu, Nader Pourmand, Robert L. White
  • Publication number: 20180045675
    Abstract: Disclosed is a method and device for sensing pH in a single living cell. The device is constructed for directing a nano-sized probe to pierce a single cell and extract accurate pH measurements in real time therefrom. A nanopipette, containing an electrode, is prepared through physisorption of chitosan, a biocompatible pH-responsive polymer, onto highly hydroxylated quartz nanopipettes with extremely small pore size (?97 nm). Changes of pH alter the surface charge of chitosan, which can be measured as a change in ionic current at the nanopore. The dynamic pH range of the nano-pH probe was from 2.6 to 10.7 with a sensitivity of 0.09 pH units. The present device can be used for single-cell intracellular pH measurements using, for example, non-cancerous and cancerous human cells, including human fibroblasts and model cells such as HeLa (epithelial cervix).
    Type: Application
    Filed: February 24, 2016
    Publication date: February 15, 2018
    Inventors: Rifat Emrah OZEL, Nader POURMAND