Patents by Inventor Nagesh K. Vodrahalli

Nagesh K. Vodrahalli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8057108
    Abstract: Embodiments of an optical detection apparatus are disclosed which may include one or more of a waveguide, a trench formed in the waveguide, a reflective surface, and a photodetector. The waveguide may be formed in a semiconductor substrate to propagate an optical signal received at a first end of the waveguide. The trench may also be formed in the waveguide having a first sidewall and a second sidewall, the first and second sidewalls forming first and second angles with the waveguide's propagation direction. The second sidewall may include a reflective surface formed thereon. The photodetector may be configured to receive an optical signal propagated in the waveguide, through the first sidewall and reflected from the reflective surface on the second sidewall.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: November 15, 2011
    Assignee: Intel Corporation
    Inventors: Achintya K. Bhowmik, Nagesh K. Vodrahalli, Gennady Farber, Hai-Feng Liu, Hamid Eslampour, Ut Tran, William B. Wong, Ruolin Li, Jesper Arentoft Jayaswal
  • Publication number: 20100296773
    Abstract: Embodiments of an optical detection apparatus are disclosed which may include one or more of a waveguide, a trench formed in the waveguide, a reflective surface, and a photodetector. The waveguide may be formed in a semiconductor substrate to propagate an optical signal received at a first end of the waveguide. The trench may also be formed in the waveguide having a first sidewall and a second sidewall, the first and second sidewalls forming first and second angles with the waveguide's propagation direction. The second sidewall may include a reflective surface formed thereon. The photodetector may be configured to receive an optical signal propagated in the waveguide, through the first sidewall and reflected from the reflective surface on the second sidewall.
    Type: Application
    Filed: July 30, 2010
    Publication date: November 25, 2010
    Inventors: Achintya K. Bhowmik, Nagesh K. Vodrahalli, Gennady Farber, Hai-Feng Liu, Hamid Eslampour, Ut Tran, William B. Wong, Ruolin Lin, Jesper Arentoft Jayaswal
  • Patent number: 7780360
    Abstract: Embodiments of an optical detection apparatus are disclosed which may include one or more of a waveguide, a trench formed in the waveguide, a reflective surface, and a photodetector. The waveguide may be formed in a semiconductor substrate to propagate an optical signal received at a first end of the waveguide. The trench may also be formed in the waveguide having a first sidewall and a second sidewall, the first and second sidewalls forming first and second angles with the waveguide's propagation direction. The second sidewall may include a reflective surface formed thereon. The photodetector may be configured to receive an optical signal propagated in the waveguide, through the first sidewall and reflected from the reflective surface on the second sidewall.
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: August 24, 2010
    Assignee: Intel Corporation
    Inventors: Achintya K. Bhowmik, Nagesh K. Vodrahalli, Gennady Farber, Hai-Feng Liu, Hamid Eslampour, Ut Tran, William B. Wong, Ruolin Li, Jesper Arentoft Jayaswal
  • Publication number: 20080279236
    Abstract: Embodiments of an optical detection apparatus are disclosed which may include one or more of a waveguide, a trench formed in the waveguide, a reflective surface, and a photodetector. The waveguide may be formed in a semiconductor substrate to propagate an optical signal received at a first end of the waveguide. The trench may also be formed in the waveguide having a first sidewall and a second sidewall, the first and second sidewalls forming first and second angles with the waveguide's propagation direction. The second sidewall may include a reflective surface formed thereon. The photodetector may be configured to receive an optical signal propagated in the waveguide, through the first sidewall and reflected from the reflective surface on the second sidewall.
    Type: Application
    Filed: July 21, 2008
    Publication date: November 13, 2008
    Inventors: Achintya K. Bhowmik, Nagesh K. Vodrahalli, Gennady Farber, Hai-Feng Liu, Hamid Eslampour, Ut Tran, William B. Wong, Ruolin Li, Jesper Arentoft Jayaswal
  • Patent number: 7401986
    Abstract: Embodiments of an optical detection apparatus are disclosed which may include one or more of a waveguide, a trench formed in the waveguide, a reflective surface, and a photodetector. The waveguide may be formed in a semiconductor substrate to propagate an optical signal received at a first end of the waveguide. The trench may also be formed in the waveguide having a first sidewall and a second sidewall, the first and second sidewalls forming first and second angles with the waveguide's propagation direction. The second sidewall may include a reflective surface formed thereon. The photodetector may be configured to receive an optical signal propagated in the waveguide, through the first sidewall and reflected from the reflective surface on the second sidewall.
    Type: Grant
    Filed: August 1, 2006
    Date of Patent: July 22, 2008
    Assignee: Intel Corporation
    Inventors: Achintya K. Bhowmik, Nagesh K. Vodrahalli, Gennady Farber, Hai-Feng Liu, Hamid Eslampour, Ut Tran, William B. Wong, Ruolin Li, Jesper Jayaswal-Arentoft
  • Patent number: 7174060
    Abstract: A method and apparatus that includes a first waveguide segment that differentially changes the amplitude of the light relative to a first polarization orientation, a thickness of oriented liquid crystal or other birefringent material sufficient to delay one polarization component one-half wavelength relative to another, and a second waveguide segment that also differentially changes the amplitude of the light based on the polarization orientation. Also, an apparatus that includes a thin polarization converter that includes a thin first substrate that is substantially transparent to a wavelength of light, and a birefringent material deposited on one or more surfaces of the first substrate and oriented such that the polarization converter forms a half-wavelength birefringent plate for the light. Also, an apparatus having a first substrate surface, a second substrate surface, and a liquid crystal material between the first and second substrate surfaces to form a polarization converter.
    Type: Grant
    Filed: July 26, 2005
    Date of Patent: February 6, 2007
    Assignee: Intel Corporation
    Inventors: Nagesh K. Vodrahalli, Achintya K. Bhowmik, Connie C. Liu, Takaharu Fujiyama, Kenji Takahashi, Biswajit Sur
  • Patent number: 7099360
    Abstract: An optical transmitter includes an external cavity laser array formed in a PLC, a trench-based detector array and an AWG. The external cavity laser is formed using an array of substantially similar laser gain blocks and an array of gratings formed in waveguides connected to the gain blocks. Each grating defines the output wavelength for its corresponding external cavity laser. Each detector of the detector array includes a coupler to cause a portion of a corresponding laser output signal of the laser array to propagate through a first sidewall of a trench and reflect off a second sidewall of the trench to a photodetector. In one embodiment, the photodetector outputs a signal indicative of the power level of the reflected signal, which a controller uses to control the laser array to equalize the power of the laser output signals.
    Type: Grant
    Filed: February 3, 2003
    Date of Patent: August 29, 2006
    Assignee: Intel Corporation
    Inventors: Achintya K. Bhowmik, Nagesh K. Vodrahalli, Gennady Farber, Hai-Feng Liu, Hamid Eslampour, Ut Tran, William B. Wong, Ruolin Li, Jesper Jayaswal-Arentoff
  • Patent number: 6928200
    Abstract: A method and apparatus that includes a first waveguide segment that differentially changes the amplitude of the light relative to a first polarization orientation, a thickness of oriented liquid crystal or other birefringent material sufficient to delay one polarization component one-half wavelength relative to another, and a second waveguide segment that also differentially changes the amplitude of the light based on the polarization orientation. Also, an apparatus that includes a thin polarization converter that includes a thin first substrate that is substantially transparent to a wavelength of light, and a birefringent material deposited on one or more surfaces of the first substrate and oriented such that the polarization converter forms a half-wavelength birefringent plate for the light. Also, an apparatus having a first substrate surface, a second substrate surface, and a liquid crystal material between the first and second substrate surfaces to form a polarization converter.
    Type: Grant
    Filed: October 7, 2002
    Date of Patent: August 9, 2005
    Assignee: Intel Corporation
    Inventors: Nagesh K. Vodrahalli, Achintya K. Bhowmik, Connie C. Liu, Takaharu Fujiyama, Kenji Takahashi, Biswajit Sur
  • Patent number: 6879743
    Abstract: A planar lightwave circuit comprises a first portion of a waveguide, a second portion of a waveguide, and a segment of crystal core fiber coupling the first portion to the second portion of the waveguide. The crystal core fiber helps to reduce the polarization sensitivity of the waveguide. In one embodiment, multiple crystal core fibers are used in a planar lightwave circuit having multiple waveguides, such as an array waveguide grating.
    Type: Grant
    Filed: December 19, 2001
    Date of Patent: April 12, 2005
    Assignee: Intel Corporation
    Inventors: Achintya K. Bhowmik, Nagesh K. Vodrahalli
  • Patent number: 6860642
    Abstract: An optical connector comprises an optical circuit and a package casing. The package casing has an integrated modular optical connector, which has multiple optical waveguides.
    Type: Grant
    Filed: March 14, 2002
    Date of Patent: March 1, 2005
    Assignee: Intel Corporation
    Inventors: Nagesh K. Vodrahalli, Jaiom S. Sambyal, Biswajit Sur
  • Patent number: 6778750
    Abstract: A planar lightwave circuit comprises a plurality of waveguides formed with a geometrical or refractive index properties that renders the planar lightwave circuit substantially polarization insensitive.
    Type: Grant
    Filed: June 26, 2002
    Date of Patent: August 17, 2004
    Assignee: Intel Corporation
    Inventors: Nagesh K. Vodrahalli, Achintya K. Bhowmik
  • Publication number: 20040155329
    Abstract: To accommodate high power densities associated with high performance integrated circuits, heat is dissipated from a surface of a die through a solderable thermal interface to a lid or integrated heat spreader. In one embodiment, the die is mounted on an organic substrate using a C4 and land grid array arrangement. In order to maximize thermal dissipation from the die while minimizing warpage of the package when subjected to heat, due to the difference in thermal coefficients of expansion between the die and the organic substrate, a thermal interface is used that has a relatively low melting point in addition to a relatively high thermal conductivity. Methods of fabrication, as well as application of the package to an electronic assembly, an electronic system, and a data processing system, are also described.
    Type: Application
    Filed: February 9, 2004
    Publication date: August 12, 2004
    Applicant: Intel Corporation
    Inventors: Biswajit Sur, Nagesh K. Vodrahalli, Thomas Workman
  • Publication number: 20040151227
    Abstract: An optical transmitter includes an external cavity laser array formed in a PLC, a trench-based detector array and an AWG. The external cavity laser is formed using an array of substantially similar laser gain blocks and an array of gratings formed in waveguides connected to the gain blocks. Each grating defines the output wavelength for its corresponding external cavity laser. Each detector of the detector array includes a coupler to cause a portion of a corresponding laser output signal of the laser array to propagate through a first sidewall of a trench and reflect off a second sidewall of the trench to a photodetector. In one embodiment, the photodetector outputs a signal indicative of the power level of the reflected signal, which a controller uses to control the laser array to equalize the power of the laser output signals.
    Type: Application
    Filed: February 3, 2003
    Publication date: August 5, 2004
    Inventors: Achintya K. Bhowmik, Nagesh K. Vodrahalli, Gennady Farber, Hai-Feng Liu, Hamid Eslampour, Ut Tran, William B. Wong, Ruolin Li, Jesper Arentoff Jayaswal
  • Publication number: 20040067001
    Abstract: A method and apparatus that includes a first waveguide segment that differentially changes the amplitude of the light relative to a first polarization orientation, a thickness of oriented liquid crystal or other birefringent material sufficient to delay one polarization component one-half wavelength relative to another, and a second waveguide segment that also differentially changes the amplitude of the light based on the polarization orientation. Also, an apparatus that includes a thin polarization converter that includes a thin first substrate that is substantially transparent to a wavelength of light, and a birefringent material deposited on one or more surfaces of the first substrate and oriented such that the polarization converter forms a half-wavelength birefringent plate for the light. Also, an apparatus having a first substrate surface, a second substrate surface, and a liquid crystal material between the first and second substrate surfaces to form a polarization converter.
    Type: Application
    Filed: October 7, 2002
    Publication date: April 8, 2004
    Applicant: Intel Corporation
    Inventors: Nagesh K. Vodrahalli, Achintya K. Bhowmik, Connie C. Liu, Takaharu Fujiyama, Kenji Takahashi, Biswajit Sur
  • Publication number: 20040001663
    Abstract: A planar lightwave circuit comprises a plurality of waveguides formed with a geometrical or refractive index properties that renders the planar lightwave circuit substantially polarization insensitive.
    Type: Application
    Filed: June 26, 2002
    Publication date: January 1, 2004
    Inventors: Nagesh K. Vodrahalli, Achintya K. Bhowmik
  • Publication number: 20030174969
    Abstract: An optical connector comprises an optical circuit and a package casing. The package casing has an integrated modular optical connector, which has multiple optical waveguides.
    Type: Application
    Filed: March 14, 2002
    Publication date: September 18, 2003
    Inventors: Nagesh K. Vodrahalli, Jaiom S. Sambyal, Biswajit Sur
  • Publication number: 20030113052
    Abstract: A planar lightwave circuit comprises a first portion of a waveguide, a second portion of a waveguide, and a segment of crystal core fiber coupling the first portion to the second portion of the waveguide. The crystal core fiber helps to reduce the polarization sensitivity of the waveguide. In one embodiment, multiple crystal core fibers are used in a planar lightwave circuit having multiple waveguides, such as an array waveguide grating.
    Type: Application
    Filed: December 19, 2001
    Publication date: June 19, 2003
    Inventors: Achintya K. Bhowmik, Nagesh K. Vodrahalli
  • Patent number: 6228468
    Abstract: A ceramic substrate for an integrated circuit package comprising a mixture of MgO and a glass, where the material has a coefficient of expansion greater than about 5 PPM/° C. and less than about 16 PPM/° C. In one embodiment, the material includes a low temperature composition glass which sinters in the range of about 600-1400° C., and is provided with metal traces selected from the group consisting essentially of copper, silver, gold and alloys thereof. The material preferably includes 30-80 percent MgO by weight, and the low temperature composition glass sinters in the range of about 900-1100° C. In another embodiment, the material includes a high temperature composition glass which sinters in the range of 1400-1800° C., and wherein the coefficient of expansion of the material is greater than about 8 PPM/° C. and less than about 16 PPM/° C.
    Type: Grant
    Filed: July 25, 1997
    Date of Patent: May 8, 2001
    Inventor: Nagesh K. Vodrahalli
  • Patent number: 6090341
    Abstract: A process and system and for extracting and refining gold from ores using relatively benign and inexpensive chemicals, fewer process steps, and permitting the recycling and re-use of process chemicals. The invention is preferably implemented as a two part process. In a first part process, gold is extracted from the ore and dissolved in a chemical solution to form a gold complex. The chemical solution preferably includes a KI and I.sub.2. Optionally, Isopropyl alcohol is mixed with the KI and I.sub.2 to serve as an accelerant. In a second part process, the complex is reduced to gold from the solution, preferably by one of two methods. The first method precipitates the gold complex by washing and decomposing of the gold complex to form pure gold. The second method electrolytically plates the gold from the gold complex solution onto a cathode to obtain pure gold.
    Type: Grant
    Filed: June 20, 1997
    Date of Patent: July 18, 2000
    Assignee: Paul L. Hickman
    Inventor: Nagesh K. Vodrahalli
  • Patent number: 5948140
    Abstract: A process and system and for extracting and refining gold from ores using relatively benign and inexpensive chemicals, fewer process steps, and permitting the recycling and re-use of process chemicals. The invention is preferably implemented as a two part process. In a first part process, gold is extracted from the ore and dissolved in a chemical solution to form a gold complex. The chemical solution preferably includes a KI and I.sub.2. Optionally, Isopropyl alcohol is mixed with the KI and I.sub.2 to serve as an accelerate. In a second part process, the complex is reduced to gold from the solution, preferably by one of two methods. The first method precipitates the gold complex by washing and decomposing of the gold complex to form pure gold. The second method electrolytically plates the gold from the gold complex solution onto a cathode to obtain pure gold.
    Type: Grant
    Filed: November 27, 1996
    Date of Patent: September 7, 1999
    Assignee: Paul L. Hickman
    Inventor: Nagesh K. Vodrahalli