Patents by Inventor Nalin Patadia

Nalin Patadia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6315878
    Abstract: The present invention provides optimized designs that allow the coverage of the full surface of a receiving face in a substrate while at the same time reducing material deposition on the edge of the substrate, material deposition on and/or scratching of the backside of the substrate. While the methods and apparatus of the invention are described within the framework of aluminum deposition chambers, it is contemplated that the invention will be equally effective in all other semiconductor processing chambers where avoiding edge and/or backside deposition, scratching, and/or sticking may be desirable. The invention provides a support member having a deposit collection channel with slanted walls to trap deposit particles that do not depose of the substrate thus preventing deposition and sticking in the backside of a processed substrate.
    Type: Grant
    Filed: September 26, 2000
    Date of Patent: November 13, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Nalin Patadia, Charles Carlson
  • Patent number: 6190037
    Abstract: The present invention provides an apparatus and method for measuring the temperature of a moving radiant object. A probe, such as a pyrometer, is disposed in an opening of a vacuum chamber adjacent a radiation transparent window. The probe defines an optical path which intercepts the radiant object entering or exiting a processing chamber. The radiant object is moved through the optical path and emits electromagnetic waves. The electromagnetic waves are collected by the probe and transmitted to a signal processing unit where the waves are detected and converted to a temperature reading. If desired, the accumulated data may then be used to generate a cooling curve representing the thermal effects experienced by the radiant object. Extrapolation or correlation methods may be used to extend the cooling curve to points in time prior to or after the data collected by the probe.
    Type: Grant
    Filed: February 19, 1999
    Date of Patent: February 20, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Ashok Das, Nety Krishna, Marc Schweitzer, Nalin Patadia, Wei Yang, Umesh Kelkar, Vijay Parkhe, Scot Petitt, Nitin Khurana
  • Patent number: 6146504
    Abstract: The present invention provides optimized designs that allow the coverage of the full surface of a receiving face in a substrate while at the same time reducing material deposition on the edge of the substrate, material deposition on and/or scratching of the backside of the substrate. While the methods and apparatus of the invention are described within the framework of aluminum deposition chambers, it is contemplated that the invention will be equally effective in all other semiconductor processing chambers where avoiding edge and/or backside deposition, scratching, and/or sticking may be desirable. The invention provides a support member having a deposit collection channel with slanted walls to trap deposit particles that do not depose of the substrate thus preventing deposition and sticking in the backside of a processed substrate.
    Type: Grant
    Filed: May 21, 1998
    Date of Patent: November 14, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Nalin Patadia, Charles Carlson
  • Patent number: 6030513
    Abstract: A mask for covering a substrate for performing capacitance-voltage measurements on the substrate is a full-faced mask covering substantially all of the substrate. The mask may include a ring with one or more strips across the ring with holes in the strips for target material deposition. In an alternative embodiment, the mask may be a disk with holes at various locations across the disk. In either embodiment, the mask generally conforms to the shape of the substrate, so that the clamp ring of the PVD chamber seats on the mask or on the substrate, so little or none of the plasma or sputtered material can escape between the substrate and clamp ring. Various embodiments of the mask provide different ways to hold the mask on the substrate, such as clamping with clips, gluing with an adhesive, folding extensions of the mask over the edge of the substrate, and holding by surface tension.
    Type: Grant
    Filed: December 5, 1997
    Date of Patent: February 29, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Nayana Ghantiwala, Nalin Patadia