Patents by Inventor Nanosolar, Inc.

Nanosolar, Inc. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130210191
    Abstract: A high-throughput method of forming a semiconductor precursor layer by use of a chalcogen-rich chalcogenides is disclosed. The method comprises forming a precursor material comprising group IB-chalcogenide and/or group IIIA-chalcogenide particles, wherein an overall amount of chalcogen in the particles relative to an overall amount of chalcogen in a group IB-IIIA-chalcogenide film created from the precursor material, is at a ratio that provides an excess amount of chalcogen in the precursor material. The excess amount of chalcogen assumes a liquid form and acts as a flux to improve intermixing of elements to form the group IB-IIIA-chalcogenide film at a desired stoichiometric ratio, wherein the excess amount of chalcogen in the precursor material is an amount greater than or equal to a stoichiometric amount found in the IB-IIIA-chalcogenide film.
    Type: Application
    Filed: November 10, 2012
    Publication date: August 15, 2013
    Applicant: Nanosolar, Inc.
    Inventor: Nanosolar, Inc.
  • Publication number: 20130059410
    Abstract: An ink for forming CIGS photovoltaic cell active layers is disclosed along with methods for making the ink, methods for making the active layers and a solar cell made with the active layer. The ink contains a mixture of nanoparticles of elements of groups IB, IIIA and (optionally) VIA. The particles are in a desired particle size range of between about 1 nm and about 500 nm in diameter, where a majority of the mass of the particles comprises particles ranging in size from no more than about 40% above or below an average particle size or, if the average particle size is less than about 5 nanometers, from no more than about 2 nanometers above or below the average particle size. The use of such ink avoids the need to expose the material to an H2Se gas during the construction of a photovoltaic cell and allows more uniform melting during film annealing, more uniform intermixing of nanoparticles, and allows higher quality absorber films to be formed.
    Type: Application
    Filed: November 3, 2012
    Publication date: March 7, 2013
    Applicant: Nanosolar, Inc.
    Inventor: Nanosolar, Inc.
  • Publication number: 20130040420
    Abstract: A precursor layer for a photovoltaic absorber layer on a substrate is formed, where the precursor layer comprises group IB and IIIA elements. The precursor layer is heated in an elongate furnace, where the heating includes depositing a group VIA-based material on the precursor layer. The substrate is placed on a support and advanced through the furnace. The support has an anti-stiction surface of a material including at least one of: silicon carbide, glass, spin-on-glass (SOG), diamond-like carbon (DLC), silicon carbide (SiC), a hydrogenated diamond coating, pyrolytic carbon and a fluoropolymer.
    Type: Application
    Filed: October 16, 2012
    Publication date: February 14, 2013
    Applicant: NANOSOLAR, INC.
    Inventor: NANOSOLAR, INC.
  • Publication number: 20130032192
    Abstract: Methods and devices are provided for improved large-scale solar installations. In one embodiment, a junction-box free photovoltaic module is used comprising of a plurality of photovoltaic cells and a module support layer providing a mounting surface for the cells. The module has a first electrical lead extending outward from one of the photovoltaic cells, the lead coupled to an adjacent module without passing the lead through a central junction box. The module may have a second electrical lead extending outward from one of the photovoltaic cells, the lead coupled to another adjacent module without passing the lead through a central junction box. Without junction boxes, the module may use connectors along the edges of the modules which can substantially reduce the amount of wire or connector ribbon used for such connections.
    Type: Application
    Filed: October 11, 2012
    Publication date: February 7, 2013
    Applicant: Nanosolar, Inc.
    Inventor: Nanosolar, Inc.
  • Publication number: 20130032851
    Abstract: Optoelectronic device modules, arrays optoelectronic device modules and methods for fabricating optoelectronic device modules are disclosed. The device modules are made using a starting substrate having an insulator layer sandwiched between a bottom electrode made of a flexible bulk conductor and a conductive back plane. An active layer is disposed between the bottom electrode and a transparent conducting layer. One or more electrical contacts between the transparent conducting layer and the back plane are formed through the transparent conducting layer, the active layer, the flexible bulk conductor and the insulating layer. The electrical contacts are electrically isolated from the active layer, the bottom electrode and the insulating layer.
    Type: Application
    Filed: October 12, 2012
    Publication date: February 7, 2013
    Applicant: NANOSOLAR, INC.
    Inventor: NANOSOLAR, INC.
  • Publication number: 20130025532
    Abstract: An absorber layer of a photovoltaic device may be formed on an aluminum or metallized polymer foil substrate. A nascent absorber layer containing one or more elements of group IB and one or more elements of group IIIA is formed on the substrate. The nascent absorber layer and/or substrate is then rapidly heated from an ambient temperature to an average plateau temperature range of between about 200° C. and about 600° C. and maintained in the average plateau temperature range 1 to 30 minutes after which the temperature is reduced.
    Type: Application
    Filed: October 4, 2012
    Publication date: January 31, 2013
    Applicant: NANOSOLAR, INC.
    Inventor: NANOSOLAR, INC.
  • Publication number: 20130020557
    Abstract: An optoelectronic device is disclosed. The optoelectronic device comprises an active layer and a conducting network layer which comprises a plurality of interconnected metal nanowires and a layer of transparent conducting material in electrical contact with the active layer. The conducting network layer of interconnected metal nanowires is disposed on the layer of transparent conducting material. Above the active layer, light passes through the transparent conducting material to reach the active layer. Each of the nanowires has an elongate, non-spherical configuration and aggregate nanowire length oriented to extend laterally through a plane of the conducting network layer. This provides lengthwise contact of the nanowires to the transparent conducting material.
    Type: Application
    Filed: September 26, 2012
    Publication date: January 24, 2013
    Applicant: NANOSOLAR, INC.
    Inventor: Nanosolar, Inc.