Patents by Inventor Naohiko Sugita

Naohiko Sugita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10573009
    Abstract: Provided is an in vivo movement tracking apparatus configured to track a portion of interest that moves in vivo, in which accuracy and robustness of tracking are improved. The apparatus is configured to determine an estimated position of ah organ in a biological image based on the past movement of the organ and search for contour points corresponding to a plurality of control points, respectively, representing a contour shape of the organ in a region corresponding to the estimated position, to thereby determine an estimated contour of the organ based on the contour points. The in vivo movement tracking apparatus is configured to determine a position of a portion of interest, which moves in association with the organ, based on the estimated contour with reference to previously acquired sample data regarding a positional relationship between a contour of the organ and the portion of interest.
    Type: Grant
    Filed: January 22, 2018
    Date of Patent: February 25, 2020
    Assignees: THE UNIVERSITY OF TOKYO, THE UNIVERSITY OF ELECTRO-COMMUNICATIONS, PUBLIC UNIVERSITY CORPORATION YOKOHAMA CITY UNIVERSITY
    Inventors: Norihiro Koizumi, Atsushi Kayasuga, Kyohei Tomita, Izumu Hosoi, Yu Nishiyama, Hiroyuki Tsukihara, Hideyo Miyazaki, Hiroyuki Fukuda, Kazushi Numata, Kiyoshi Yoshinaka, Takashi Azuma, Naohiko Sugita, Yukio Homma, Yoichiro Matsumoto, Mamoru Mitsuishi
  • Publication number: 20180253855
    Abstract: Provided is an in vivo movement tracking apparatus configured to track a portion of interest that moves in vivo, in which accuracy and robustness of tracking are improved. The apparatus is configured to determine an estimated position of ah organ in a biological image based on the past movement of the organ and search for contour points corresponding to a plurality of control points, respectively, representing a contour shape of the organ in a region corresponding to the estimated position, to thereby determine an estimated contour of the organ based on the contour points. The in vivo movement tracking apparatus is configured to determine a position of a portion of interest, which moves in association with the organ, based on the estimated contour with reference to previously acquired sample data regarding a positional relationship between a contour of the organ and the portion of interest.
    Type: Application
    Filed: January 22, 2018
    Publication date: September 6, 2018
    Inventors: Norihiro KOIZUMI, Atsushi KAYASUGA, Kyohei TOMITA, Izumu HOSOI, Yu NISHIYAMA, Hiroyuki TSUKIHARA, Hideyo MIYAZAKI, Hiroyuki FUKUDA, Kazushi NUMATA, Kiyoshi YOSHINAKA, Takashi AZUMA, Naohiko SUGITA, Yukio HOMMA, Yoichiro MATSUMOTO, Mamoru MITSUISHI
  • Publication number: 20110306985
    Abstract: A surgical assistance system for operating on biological tissue using a surgical tool attached to an arm of an automatically-controlled surgical instrument so that an optimal feed rate of the tool is calculated and outputted to the surgical instrument, the system including: a device for storing and voxelizing medical image data obtained from a biological tissue subject to surgery; a device for setting an operative location based on the shape of the biological tissue; a device for calculating a tool path along which the tool travels to perform surgery at an operative location; a device for determining the region of interference between the tool and the voxels; a device for determining the hardness of the biological tissue in the interference region; a device for calculating an optimal tool feed rate corresponding to the hardness; and a device for outputting the feed rate obtained by the calculations to the surgical instrument.
    Type: Application
    Filed: January 7, 2011
    Publication date: December 15, 2011
    Applicants: Nakashima Medical Co., Ltd.
    Inventors: Takayuki INOUE, Koichi KURAMOTO, Yoshio NAKASHIMA, Naohiko SUGITA, Mamoru MITSUISHI, Yoshikazu NAKASHIMA
  • Patent number: 7003020
    Abstract: In a spread spectrum receiver, a received signal is despread by a correlator to produce multiple delay profiles, or a sum of autocorrelations, corresponding to multiple propagation paths of the signal. Subtractors are connected in successive stages from the output of the correlator. Corresponding to the subtractors, path searchers are connected to successive taps of the subtractors for respectively detecting the delay profiles produced by the correlator. In each subtractor the output of the corresponding path searcher is subtracted from the output of the subtractor of preceding stage. RAKE fingers are provided for despreading the received signal at delay times respectively determined by the delay profiles detected by the path searchers. The despread signals are maximal-ratio combined.
    Type: Grant
    Filed: February 4, 2002
    Date of Patent: February 21, 2006
    Assignee: NEC Corporation
    Inventor: Naohiko Sugita
  • Patent number: 6678337
    Abstract: A method for demodulating a received signal including a pilot signal while estimating the fading distortion of data by detecting the fading distortion of a unique word as the pilot signal inserted into multiple sections of the received signal, the method having the steps of: (1) setting part of data as an extended the unique word; (2) detecting the fading distortion of the unique word as the pilot signal as a first fading distortion and detecting the fading distortion of the extended unique word as a second fading distortion; (3) estimating the fading distortion of data based on the first and second fading distortions; and (4) demodulating data based on the fading distortion of data.
    Type: Grant
    Filed: August 5, 1999
    Date of Patent: January 13, 2004
    Assignee: NEC Corporation
    Inventor: Naohiko Sugita
  • Patent number: 6674792
    Abstract: A receiver includes inversely spreading circuit, a RAKE synthesizing circuit, a noise measuring circuit, a weighting circuit and a decoder. The inversely spreading circuit inversely spreads a reception signal for every path using a spreading code to produce path data signals for paths. The RAKE synthesizing circuit synthesizes the path data signals to output a RAKE synthesis signal while carrying out a weighting operation for every path such that the RAKE synthesis signal has a maximum S/N ratio. The noise measuring circuit measures a noise level of each of the path data signals, and calculates a total noise amount for the paths from the measured noise levels. The weighting circuit carries out a weighting operation of the RAKE synthesis signal based on the total noise amount to produce a weighted signal such that a time change of distortion in the RAKE synthesis signal is cancelled. The decoder decodes the weighted signal to produce an information sequence.
    Type: Grant
    Filed: September 19, 2000
    Date of Patent: January 6, 2004
    Assignee: NEC Corporation
    Inventor: Naohiko Sugita
  • Patent number: 6570935
    Abstract: In this demodulation method, a receive signal is demodulated estimating the fading distortion of data by detecting the fading distortion of unique word as pilot signal inserted into multiple sections of the receive signal. The method has the steps of: comparing a unique word in the multiple sections of receive signal and a known unique word and thereby detecting the fading distortion of unique word in the multiple sections; calculating a spline interpolation curve based on the fading distortion of unique word in the multiple sections; estimating the fading distortion of data in the receive signal from the spline interpolation curve; and demodulating the data in the receive signal based on the fading distortion of the data.
    Type: Grant
    Filed: May 24, 1999
    Date of Patent: May 27, 2003
    Assignee: NEC Corporation
    Inventor: Naohiko Sugita
  • Publication number: 20020106039
    Abstract: In a spread spectrum receiver, a received signal is despread by a correlator to produce multiple delay profiles, or a sum of autocorrelations, corresponding to multiple propagation paths of the signal. Subtractors are connected in successive stages from the output of the correlator. Corresponding to the subtractors, path searchers are connected to successive taps of the subtractors for respectively detecting the delay profiles produced by the correlator. In each subtractor the output of the corresponding path searcher is subtracted from the output of the subtractor of preceding stage. RAKE fingers are provided for despreading the received signal at delay times respectively determined by the delay profiles detected by the path searchers. The despread signals are maximal-ratio combined.
    Type: Application
    Filed: February 4, 2002
    Publication date: August 8, 2002
    Applicant: NEC CORPORATION
    Inventor: Naohiko Sugita