Patents by Inventor Naoki HISADA

Naoki HISADA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230304422
    Abstract: Provided is a plant that includes: a boiler; a device connected to the boiler; a water supply source that is configured to pool water; a water supply line that supplies water from the water supply source to the boiler; a cooler that transfers heat from a medium to be cooled to supply-water, which is the water flowing along the water supply line; a thermometer that determines a temperature of the medium to be cooled or the supply-water; and a temperature regulator that is configured to regulate the temperature of the medium to be cooled on the basis of the temperature determined by the thermometer.
    Type: Application
    Filed: June 2, 2023
    Publication date: September 28, 2023
    Inventors: Hideyuki UECHI, Naoki HISADA
  • Patent number: 11708773
    Abstract: Provided is a plant that includes: a boiler; a device connected to the boiler; a water supply source that is configured to pool water; a water supply line that supplies water from the water supply source to the boiler; a cooler that transfers heat from a medium to be cooled to supply-water, which is the water flowing along the water supply line; a thermometer that determines a temperature of the medium to be cooled or the supply-water; and a temperature regulator that is configured to regulate the temperature of the medium to be cooled on the basis of the temperature determined by the thermometer.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: July 25, 2023
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Hideyuki Uechi, Naoki Hisada
  • Patent number: 11274575
    Abstract: A gas turbine plant includes a gas turbine, an exhaust heat recovery boiler, and a water supply system that is configured to supply water to the exhaust heat recovery boiler. The exhaust heat recovery boiler has an evaporator configured to use an exhaust gas to heat water, thereby generating steam, and a reheater that is configured to heat steam with the exhaust gas introduced from the evaporator. The water supply system has a water supply line that is configured to supply water from a water supply source to the exhaust heat recovery boiler, and a supplied water temperature regulator that is configured to regulate a temperature of supplied water, which is the water in the water supply line.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: March 15, 2022
    Assignee: MITSUBISHI POWER, LTD.
    Inventors: Hideyuki Uechi, Tatsuo Ishiguro, Naoki Hisada
  • Publication number: 20210324766
    Abstract: Provided is a plant that includes: a boiler; a device connected to the boiler; a water supply source that is configured to pool water; a water supply line that supplies water from the water supply source to the boiler; a cooler that transfers heat from a medium to be cooled to supply-water, which is the water flowing along the water supply line; a thermometer that determines a temperature of the medium to be cooled or the supply-water; and a temperature regulator that is configured to regulate the temperature of the medium to be cooled on the basis of the temperature determined by the thermometer.
    Type: Application
    Filed: June 30, 2021
    Publication date: October 21, 2021
    Inventors: Hideyuki UECHI, Naoki HISADA
  • Patent number: 11078808
    Abstract: Provided is a plant that includes: a boiler (30); a device connected to the boiler (30); a water supply source (41) that is configured to pool water; a water supply line (44) that supplies water from the water supply source (41) to the boiler (30); a cooler (50, 60g, 60s, 70g, 70s, 80) that transfers heat from a medium to be cooled to supply-water (W), which is the water flowing along the water supply line (44); a thermometer (59, 69, 79, 89) that determines a temperature of the medium to be cooled or the supply-water; and a temperature regulator (53, 62, 72, 82) that is configured to regulate the temperature of the medium to be cooled on the basis of the temperature determined by the thermometer (59, 69, 79, 89).
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: August 3, 2021
    Assignee: MITSUBISHI POWER, LTD.
    Inventors: Hideyuki Uechi, Naoki Hisada
  • Patent number: 10927713
    Abstract: An intake air cooling device includes a water supply line and a heat pump device. The water supply line is configured to send water to a waste heat recovery boiler which is configured to generate steam using heat of an exhaust gas from a gas turbine. The heat pump device is configured to transfer heat of air suctioned by the gas turbine to water flowing through the water supply line and thereby cool the air while heating the water.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: February 23, 2021
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Hideyuki Uechi, Eisaku Ito, Hideaki Sugishita, Naoki Hisada
  • Patent number: 10844753
    Abstract: A boiler including one or more evaporators, an economizer, and a low-temperature heat exchanger. The economizer is located on a downstream side of the most downstream evaporator which is an evaporator at the most downstream side among the one or more evaporators. The low-temperature heat exchanger is located on the downstream side of the economizer, has an inlet for receiving water from the outside, and is configured to heat the water introduced from the inlet and sent to the economizer with the combustion gas.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: November 24, 2020
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Hideyuki Uechi, Hiroyuki Yagita, Kuniaki Aoyama, Hideaki Sugishita, Yukimasa Nakamoto, Yuichi Oka, Naoki Hisada, Tarou Ichihara
  • Publication number: 20200332681
    Abstract: The present invention provides a gas turbine plant that includes a gas turbine, an exhaust heat recovery boiler, and a water supply system that is configured to supply water to the exhaust heat recovery boiler. The exhaust heat recovery boiler has an evaporator that uses an exhaust gas to heat water, thereby generating steam, and a reheater that is configured to heat steam from outside with the exhaust gas passing through the evaporator. The water supply system has a water supply line that is configured to supply water from a water supply source to the exhaust heat recovery boiler, and a supplied water temperature regulator that is configured to regulate the temperature of the supplied water, which is the water flowing along the water supply line.
    Type: Application
    Filed: March 8, 2017
    Publication date: October 22, 2020
    Inventors: Hideyuki UECHI, Tatsuo ISHIGURO, Naoki HISADA
  • Publication number: 20190178111
    Abstract: Provided is a plant that includes: a boiler (30); a device connected to the boiler (30); a water supply source (41) that is configured to pool water; a water supply line (44) that supplies water from the water supply source (41) to the boiler (30); a cooler (50, 60g, 60s, 70g, 70s, 80) that transfers heat from a medium to be cooled to supply-water (W), which is the water flowing along the water supply line (44); a thermometer (59, 69, 79, 89) that determines a temperature of the medium to be cooled or the supply-water; and a temperature regulator (53, 62, 72, 82) that is configured to regulate the temperature of the medium to be cooled on the basis of the temperature determined by the thermometer (59, 69, 79, 89).
    Type: Application
    Filed: March 8, 2017
    Publication date: June 13, 2019
    Inventors: Hideyuki UECHI, Naoki HISADA
  • Publication number: 20180058267
    Abstract: A boiler including one or more evaporators, an economizer, and a low-temperature heat exchanger. The economizer is located on a downstream side of the most downstream evaporator which is an evaporator at the most downstream side among the one or more evaporators. The low-temperature heat exchanger is located on the downstream side of the economizer, has an inlet for receiving water from the outside, and is configured to heat the water introduced from the inlet and sent to the economizer with the combustion gas.
    Type: Application
    Filed: March 22, 2016
    Publication date: March 1, 2018
    Inventors: Hideyuki UECHI, Hiroyuki YAGITA, Kuniaki AOYAMA, Hideaki SUGISHITA, Yukimasa NAKAMOTO, Yuichi OKA, Naoki HISADA, Tarou ICHIHARA
  • Publication number: 20180045080
    Abstract: An intake air cooling device includes a water supply line and a heat pump device. The water supply line sends water to a waste heat recovery boiler which generates steam using heat of an exhaust gas from a gas turbine. The heat pump device transfers heat of air suctioned by the gas turbine to water flowing through the water supply line and thereby cools the air while heating the water.
    Type: Application
    Filed: March 10, 2016
    Publication date: February 15, 2018
    Applicant: Mitsubishi Heavy Industries, Ltd.
    Inventors: Hideyuki UECHI, Eisaku ITO, Hideaki SUGISHITA, Naoki HISADA