Patents by Inventor Naoki Nobutani

Naoki Nobutani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11767017
    Abstract: A travel mode switching device for a vehicle is provided, which is switchable between a plurality of travel modes including a sport travel mode and a towing travel mode. The device includes a travel mode selection interface that allows a driver to select one of the travel modes, a towing detection sensor that detects a towing state, and a processor configured to execute a travel mode switching module to switch the travel mode to the travel mode selected by the travel mode selection interface, and a travel mode regulating module to regulate the selection of the sport travel mode by the travel mode selection interface when the towing state is detected by the towing detection sensor, and regulate the selection of the towing travel mode by the travel mode selection interface when the towing state is not detected.
    Type: Grant
    Filed: April 8, 2022
    Date of Patent: September 26, 2023
    Assignee: Mazda Motor Corporation
    Inventors: Naoki Nobutani, Yasumasa Imamura, Daisuke Umetsu, Naoki Takata, Juntaro Matsuo
  • Publication number: 20220340136
    Abstract: A travel mode switching device for a vehicle is provided, which is switchable between a plurality of travel modes including a sport travel mode and a towing travel mode. The device includes a travel mode selection interface that allows a driver to select one of the travel modes, a towing detection sensor that detects a towing state, and a processor configured to execute a travel mode switching module to switch the travel mode to the travel mode selected by the travel mode selection interface, and a travel mode regulating module to regulate the selection of the sport travel mode by the travel mode selection interface when the towing state is detected by the towing detection sensor, and regulate the selection of the towing travel mode by the travel mode selection interface when the towing state is not detected.
    Type: Application
    Filed: April 8, 2022
    Publication date: October 27, 2022
    Inventors: Naoki Nobutani, Yasumasa Imamura, Daisuke Umetsu, Naoki Takata, Juntaro Matsuo
  • Patent number: 11458836
    Abstract: A vehicle system includes an engine driving a vehicle, a front wheel and a rear wheel, a suspension device with an attachment portion to a vehicle body which is located at a higher level than a center axis of the rear wheel, an electromagnetic coupling to distribute a torque of the engine to the front wheel and the rear wheel, a steering wheel to be operated by a driver, a steering angle sensor to detect a steering angle corresponding to operation of the steering wheel, and a controller to control the engine and the electromagnetic coupling. The controller is configured to control the electromagnetic coupling such that the torque distributed to the rear wheel is decreased in accordance with a returning operation of the steering wheel which is detected by the steering angle sensor.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: October 4, 2022
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Yasumasa Imamura, Naoki Nobutani, Daisuke Umetsu
  • Patent number: 11420618
    Abstract: A driving force control device 1 for a vehicle V comprises: a D-? map M1 defining a linear correlation between a driving stiffness D and a maximum road surface ?; a slip ratio calculation circuit 21 for calculating a slip ratio S of one of a pair of front road wheels 10L, 10R; a DS calculation circuit 22 for calculating the driving stiffness D corresponding to a value the slip ratio S calculated by the slip ratio calculation circuit 21; a maximum road surface ? calculation circuit 23 for assigning a value of the driving stiffness D calculated by the DS calculation circuit 22 to the D-? map M1 to calculate the maximum road surface ?; and a driving force distribution circuit 24 for controlling a driving force, using a value of the maximum road surface ? calculated by the maximum road surface ? calculation circuit 23.
    Type: Grant
    Filed: November 2, 2017
    Date of Patent: August 23, 2022
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Yasumasa Imamura, Yasushi Yagi, Tetsushi Marutani, Naoki Nobutani, Daisuke Kofu, Akihiro Tatara
  • Patent number: 11332144
    Abstract: A vehicle system comprises an engine driving a vehicle, a front wheel and a rear wheel, a suspension device with an attachment portion to a vehicle body which is located at a higher level than a center axis of the rear wheel, an electromagnetic coupling to distribute a torque of the engine to the front wheel and the rear wheel, a steering wheel to be operated by a driver, a steering angle sensor to detect a steering angle corresponding to operation of the steering wheel, and a controller to control the engine and the electromagnetic coupling. The controller is configured to control the electromagnetic coupling such that the torque distributed to the rear wheel is increased in accordance with turning operation of the steering wheel which is detected by the steering angle sensor.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: May 17, 2022
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Yasumasa Imamura, Naoki Nobutani, Daisuke Umetsu
  • Patent number: 11143249
    Abstract: A driving force distribution control device mounted on a four-wheel drive vehicle is provided. A coupling mechanism controller connects a drive shaft with an auxiliary driving wheel and sets a fastening force as a first fastening force, when an increase rate in an accelerator opening becomes more than a given value and a vehicle speed is below a given first speed, and changes the fastening force from the first fastening force to a second fastening force, when a slip of at least one of main driving wheels is detected after the fastening force is set to the first fastening force, and before a given time period has lapsed from the setting of the fastening force, or before the vehicle speed becomes faster than a given second speed. The second fastening force at least immediately after the change of the fastening force is a value larger than the first fastening force.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: October 12, 2021
    Assignee: Mazda Motor Corporation
    Inventors: Yasumasa Imamura, Naoki Nobutani, Keisuke Haruta, Daisuke Umetsu, Yasushi Yagi
  • Patent number: 11097612
    Abstract: A driving force distribution control system for a four-wheel drive vehicle is provided. The four-wheel drive vehicle uses front wheels as main driving wheels, and when a towed vehicle is coupled to a coupling part provided to a rear part of the four-wheel drive vehicle, the towed vehicle has the center of gravity position so that a downward load in a vehicle up-and-down direction is applied to the rear part of the vehicle through the coupling part. A driving force distribution control device includes a towing determination module configured to determine whether the vehicle is towing the towed vehicle, and when it is determined that the vehicle is towing the towed vehicle, a driving force distribution control device controls the driving force distributing device so that the driving force distributing amount to rear wheels becomes larger than that when the four-wheel drive vehicle is not towing the towed vehicle.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: August 24, 2021
    Assignee: Mazda Motor Corporation
    Inventors: Yasumasa Imamura, Daisuke Umetsu, Yoichi Fujioka, Naoki Nobutani
  • Publication number: 20210245600
    Abstract: A driving force distribution control system for a four-wheel drive vehicle is provided. The four-wheel drive vehicle uses front wheels as main driving wheels, and when a towed vehicle is coupled to a coupling part provided to a rear part of the four-wheel drive vehicle, the towed vehicle has the center of gravity position so that a downward load in a vehicle up-and-down direction is applied to the rear part of the vehicle through the coupling part. A driving force distribution control device includes a towing determination module configured to determine whether the vehicle is towing the towed vehicle, and when it is determined that the vehicle is towing the towed vehicle, a driving force distribution control device controls the driving force distributing device so that the driving force distributing amount to rear wheels becomes larger than that when the four-wheel drive vehicle is not towing the towed vehicle.
    Type: Application
    Filed: November 23, 2020
    Publication date: August 12, 2021
    Inventors: Yasumasa Imamura, Daisuke Umetsu, Yoichi Fujioka, Naoki Nobutani
  • Publication number: 20200370608
    Abstract: A driving force distribution control device mounted on a four-wheel drive vehicle is provided. A coupling mechanism controller connects a drive shaft with an auxiliary driving wheel and sets a fastening force as a first fastening force, when an increase rate in an accelerator opening becomes more than a given value and a vehicle speed is below a given first speed, and changes the fastening force from the first fastening force to a second fastening force, when a slip of at least one of main driving wheels is detected after the fastening force is set to the first fastening force, and before a given time period has lapsed from the setting of the fastening force, or before the vehicle speed becomes faster than a given second speed. The second fastening force at least immediately after the change of the fastening force is a value larger than the first fastening force.
    Type: Application
    Filed: May 15, 2020
    Publication date: November 26, 2020
    Inventors: Yasumasa Imamura, Naoki Nobutani, Keisuke Haruta, Daisuke Umetsu, Yasushi Yagi
  • Publication number: 20200238995
    Abstract: A vehicle system comprises an engine driving a vehicle, a front wheel and a rear wheel, a suspension device with an attachment portion to a vehicle body which is located at a higher level than a center axis of the rear wheel, an electromagnetic coupling to distribute a torque of the engine to the front wheel and the rear wheel, a steering wheel to be operated by a driver, a steering angle sensor to detect a steering angle corresponding to operation of the steering wheel, and a controller to control the engine and the electromagnetic coupling. The controller is configured to control the electromagnetic coupling such that the torque distributed to the rear wheel is increased in accordance with turning operation of the steering wheel which is detected by the steering angle sensor.
    Type: Application
    Filed: January 24, 2020
    Publication date: July 30, 2020
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Yasumasa IMAMURA, Naoki NOBUTANI, Daisuke UMETSU
  • Publication number: 20200238823
    Abstract: A vehicle system comprises an engine driving a vehicle, a front wheel and a rear wheel, a suspension device with an attachment portion to a vehicle body which is located at a higher level than a center axis of the rear wheel, an electromagnetic coupling to distribute a torque of the engine to the front wheel and the rear wheel, a steering wheel to be operated by a driver, a steering angle sensor to detect a steering angle corresponding to operation of the steering wheel, and a controller to control the engine and the electromagnetic coupling. The controller is configured to control the electromagnetic coupling such that the torque distributed to the rear wheel is decreased in accordance with returning operation of the steering wheel which is detected by the steering angle sensor.
    Type: Application
    Filed: January 24, 2020
    Publication date: July 30, 2020
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Yasumasa IMAMURA, Naoki NOBUTANI, Daisuke UMETSU
  • Patent number: 10597036
    Abstract: The vehicle driving force control device comprises: a behavior control mechanism for reducing a driving force of an engine according to a steering speed; a driving force distribution mechanism for distributing the driving force of the engine to rear road wheels; and an ECU for controlling the mechanisms. The behavior control mechanism reduces the driving force by a target torque reduction amount set based on the steering speed, to thereby generate a deceleration, and the driving force distribution mechanism distributes the driving force to the front road wheels and the rear road wheels based on a distribution rate set for the rear road wheels depending on a traveling state, and the ECU corrects the distribution rate based on the target torque reduction amount during cornering of the vehicle.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: March 24, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Yasumasa Imamura, Osamu Sunahara, Daisuke Umetsu, Naoki Nobutani
  • Patent number: 10471952
    Abstract: A method of controlling a driving force of a four-wheel drive vehicle includes causing a control unit to acquire a vehicle speed, a lateral acceleration, a driving force of a wheel, a road surface friction coefficient, and a ground contact load of the wheel when the vehicle is traveling, determine whether a road surface is rough based on the acquired road surface condition, correct, when the road surface is determined to be rough, the load of the wheel, by applying thereto a load change rate set according to the roughness, predict a slip occurrence of the wheel by comparing a product of the corrected load and the road surface friction coefficient to a total force of the driving force and a lateral force caused by a lateral acceleration in cornering, and reduce, when the slip occurrence is predicted, the driving force so as to prevent the slip occurrence.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: November 12, 2019
    Assignee: Mazda Motor Corporation
    Inventors: Yasumasa Imamura, Yasushi Yagi, Daisuke Kofu, Akihiro Tatara, Naoki Nobutani
  • Publication number: 20190263392
    Abstract: A driving force control device 1 for a vehicle V comprises: a D-? map M1 defining a linear correlation between a driving stiffness D and a maximum road surface ?; a slip ratio calculation circuit 21 for calculating a slip ratio S of one of a pair of front road wheels 10L, 10R; a DS calculation circuit 22 for calculating the driving stiffness D corresponding to a value the slip ratio S calculated by the slip ratio calculation circuit 21; a maximum road surface ? calculation circuit 23 for assigning a value of the driving stiffness D calculated by the DS calculation circuit 22 to the D-? map M1 to calculate the maximum road surface ?; and a driving force distribution circuit 24 for controlling a driving force, using a value of the maximum road surface ? calculated by the maximum road surface ? calculation circuit 23.
    Type: Application
    Filed: November 2, 2017
    Publication date: August 29, 2019
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Yasumasa IMAMURA, Yasushi YAGI, Tetsushi MARUTANI, Naoki NOBUTANI, Daisuke KOFU, Akihiro TATARA
  • Publication number: 20190100210
    Abstract: The vehicle driving force control device comprises: a behavior control mechanism for reducing a driving force of an engine according to a steering speed; a driving force distribution mechanism for distributing the driving force of the engine to rear road wheels; and an ECU for controlling the mechanisms. The behavior control mechanism reduces the driving force by a target torque reduction amount set based on the steering speed, to thereby generate a deceleration, and the driving force distribution mechanism distributes the driving force to the front road wheels and the rear road wheels based on a distribution rate set for the rear road wheels depending on a traveling state, and the ECU corrects the distribution rate based on the target torque reduction amount during cornering of the vehicle.
    Type: Application
    Filed: September 11, 2018
    Publication date: April 4, 2019
    Inventors: Yasumasa Imamura, Osamu Sunahara, Daisuke Umetsu, Naoki Nobutani
  • Publication number: 20180362021
    Abstract: A method of controlling a driving force of a four-wheel drive vehicle includes causing a control unit to acquire a vehicle speed, a lateral acceleration, a driving force of a wheel, a road surface friction coefficient, and a ground contact load of the wheel when the vehicle is traveling, determine whether a road surface is rough based on the acquired road surface condition, correct, when the road surface is determined to be rough, the load of the wheel, by applying thereto a load change rate set according to the roughness, predict a slip occurrence of the wheel by comparing a product of the corrected load and the road surface friction coefficient to a total force of the driving force and a lateral force caused by a lateral acceleration in cornering, and reduce, when the slip occurrence is predicted, the driving force so as to prevent the slip occurrence.
    Type: Application
    Filed: June 12, 2018
    Publication date: December 20, 2018
    Inventors: Yasumasa Imamura, Yasushi Yagi, Daisuke Kofu, Akihiro Tatara, Naoki Nobutani