Patents by Inventor Naomasa Suzuki

Naomasa Suzuki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9659744
    Abstract: A charged particle beam apparatus makes it possible to acquire information in the cross-sectional direction (depth direction) of a sample having an internal structure in a nondestructive manner with reduced damage. Further, the apparatus makes it possible to analyze the depth and/or dimensions in the depth direction of the internal structure. The charged particle beam apparatus includes: a means for providing a time base for control signals; a means for applying a charged particle beam to a sample in synchronization with the time base and controlling an irradiation position; a means for analyzing the emission characteristics of an emission electron from the sample from a detection signal of the emission electron; and a means for analyzing the electrical characteristics or cross-sectional morphological characteristics of the sample based on the emission characteristics.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: May 23, 2017
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Natsuki Tsuno, Naomasa Suzuki, Hideyuki Kazumi, Shoji Hotta, Yoshinobu Kimura
  • Patent number: 9653256
    Abstract: Provided is a charged-particle-beam device capable of simultaneously cancelling out a plurality of aberrations caused by non-uniform distribution of the opening angle and energy of a charged particle beam. The charged-particle-beam device is provided with an aberration generation lens for generating an aberration due to the charged particle beam passing off-axis, and a corrective lens for causing the trajectory of the charged particle beam to converge on the main surface of an objective lens irrespective of the energy of the charged particle beam. The main surface of the corrective lens is disposed at a crossover position at which a plurality of charged particle beams having differing opening angles converge after passing through the aberration generation lens.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: May 16, 2017
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Akira Ikegami, Hideto Dohi, Hideyuki Kazumi, Yoichi Ose, Naomasa Suzuki, Momoyo Enyama, Ryuji Nishi, Akio Takaoka
  • Patent number: 9644955
    Abstract: A scanning electron beam device having: a deflector (5) for deflecting an electron beam (17) emitted from an electron source (1); an objective lens (7) for causing the electron beam to converge; a retarding electrode; a stage (9) for placing a wafer (16); and a controller (15); wherein the stage can be raised and lowered. In the low acceleration voltage region, the controller performs rough adjustment and fine adjustment of the focus in relation to the variation in the height of the wafer using electromagnetic focusing performed through excitation current adjustment of the objective lens. In the high acceleration voltage region, the controller performs rough adjustment of the focus in relation to the variation in the height of the wafer by mechanical focusing performed through raising and lowering of the stage, and performs fine adjustment by electrostatic focusing performed through adjustment of the retarding voltage.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: May 9, 2017
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Tasuku Yano, Yasunari Sohda, Muneyuki Fukuda, Katsunori Onuki, Hajime Kawano, Naomasa Suzuki
  • Publication number: 20160300690
    Abstract: Provided is a charged-particle-beam device capable of simultaneously cancelling out a plurality of aberrations caused by non-uniform distribution of the opening angle and energy of a charged particle beam. The charged-particle-beam device is provided with an aberration generation lens for generating an aberration due to the charged particle beam passing off-axis, and a corrective lens for causing the trajectory of the charged particle beam to converge on the main surface of an objective lens irrespective of the energy of the charged particle beam. The main surface of the corrective lens is disposed at a crossover position at which a plurality of charged particle beams having differing opening angles converge after passing through the aberration generation lens.
    Type: Application
    Filed: November 5, 2014
    Publication date: October 13, 2016
    Inventors: Akira IKEGAMI, Hideto DOHI, Hideyuki KAZUMI, Yoichi OSE, Naomasa SUZUKI, Momoyo ENYAMA, Ryuji NISHI, Akio TAKAOKA
  • Patent number: 9384940
    Abstract: In order to provide a charged particle beam apparatus capable of high resolution measurement of a sample at any inclination angle, a charged particle beam apparatus for detecting secondary charged particles (115) generated by irradiating a sample (114) with a primary charged particle beam (110) is provided with a beam tilt lens (113) having: a yoke magnetic path member (132) and a lens coil (134) to focus the primary charged particle beam (110) on the sample (114); and a solenoid coil (133) configured to arrange the upper end on the side surface of the yoke magnetic path member (132) and arrange the bottom end between the tip end of the pole piece of the yoke magnetic path member (132) and the sample (114) in order to arbitrarily tilt the primary charged particle beam (110) on the sample (114).
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: July 5, 2016
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Muneyuki Fukuda, Naomasa Suzuki, Akira Ikegami, Hideto Dohi, Momoyo Enyama, Tomoyasu Shojo
  • Publication number: 20160148781
    Abstract: A charged particle beam apparatus makes it possible to acquire information in the cross-sectional direction (depth direction) of a sample having an internal structure in a nondestructive manner with reduced damage. Further, the apparatus makes it possible to analyze the depth and/or dimensions in the depth direction of the internal structure. The charged particle beam apparatus includes: a means for providing a time base for control signals; a means for applying a charged particle beam to a sample in synchronization with the time base and controlling an irradiation position; a means for analyzing the emission characteristics of an emission electron from the sample from a detection signal of the emission electron; and a means for analyzing the electrical characteristics or cross-sectional morphological characteristics of the sample based on the emission characteristics.
    Type: Application
    Filed: November 20, 2015
    Publication date: May 26, 2016
    Inventors: Natsuki TSUNO, Naomasa SUZUKI, Hideyuki KAZUMI, Shoji HOTTA, Yoshinobu KIMURA
  • Patent number: 9324540
    Abstract: When a signal electron is detected by energy selection by combining and controlling retarding and boosting for observation of a deep hole, etc., the only way for focus adjustment is to use a change in magnetic field of an objective lens. However, since responsiveness of the change in magnetic field is poor, throughput reduces.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: April 26, 2016
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Ichiro Tachibana, Naomasa Suzuki
  • Patent number: 9312099
    Abstract: The present invention provides a charged particle beam device capable of automatically setting proper analysis positions for defects having various shapes. This charged particle beam device includes: an electron source for emitting an electron beam; a condenser lens for converging the electron beam emitted from the electron source; deflection means for changing a position of the electron beam converged by the condenser lens; an objective lens for constricting the electron beam changed by the deflection means so as to irradiate an inspection object therewith; a sample stage on which the inspection object is to be mounted; and defect analysis means for analyzing a defect based on information as to elements released from a defective portion of the inspection object by the irradiation with the electron beam, wherein the defect analysis means determines an analysis point based on a shape of the defect from among defect areas decided as one defect by the defect analysis means.
    Type: Grant
    Filed: December 26, 2013
    Date of Patent: April 12, 2016
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Kenji Obara, Satoshi Umehara, Naomasa Suzuki
  • Patent number: 9287084
    Abstract: Provided are an aberration corrector that reduces irregularity of a magnetic field of a multipole to obtain an image of high resolution and a charged particle beam apparatus using the same. The aberration corrector includes a plurality of magnetic field type poles, a ring that magnetically connects the plurality of poles with one another and an adjustment member disposed between the pole and the ring to adjust a spacing between the pole and the ring per pole.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: March 15, 2016
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Zhaohui Cheng, Hideo Kashima, Hiroaki Baba, Takeyoshi Ohashi, Tomonori Nakano, Kotoko Urano, Naomasa Suzuki
  • Patent number: 9287082
    Abstract: A charged particle beam apparatus includes a charged particle beam source which irradiates a sample with a charged particle beam, an electromagnetic lens, a lens control electric source for controlling strength of a convergence effect of the electromagnetic lens; and a phase compensation circuit which is connected to the lens control electric source in parallel with the electromagnetic lens, and controls a lens current at the time of switching the strength of the convergence effect of the electromagnetic lens such that the lens current monotonically increases or monotonically decreases.
    Type: Grant
    Filed: February 7, 2015
    Date of Patent: March 15, 2016
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Kenichi Morita, Sayaka Tanimoto, Makoto Sakakibara, Muneyuki Fukuda, Naomasa Suzuki, Kenji Obara
  • Publication number: 20150364290
    Abstract: The charged particle beam application device is provided with a charged particle source and an objective lens that converges charged particle beam generated by the charged particle source onto a sample. In this case, the charged particle beam application device is further provided with an aberration generating element installed between the charged particle beam source and the objective lens, a tilt-use deflector installed between the aberration generating element and the objective lens, a deflection aberration control unit for controlling the aberration generating element, a first electromagnetic field superposing multipole installed between the aberration generating element and the objective lens, and an electromagnetic field superposing multipole control unit for controlling the first electromagnetic field superposing multipole.
    Type: Application
    Filed: June 16, 2015
    Publication date: December 17, 2015
    Inventors: Momoyo ENYAMA, Akira IKEGAMI, Hideto DOHI, Hideyuki KAZUMI, Naomasa SUZUKI
  • Publication number: 20150348750
    Abstract: The present invention provides a charged particle beam device capable of automatically setting proper analysis positions for defects having various shapes. This charged particle beam device includes: an electron source for emitting an electron beam; a condenser lens for converging the electron beam emitted from the electron source; deflection means for changing a position of the electron beam converged by the condenser lens; an objective lens for constricting the electron beam changed by the deflection means so as to irradiate an inspection object therewith; a sample stage on which the inspection object is to be mounted; and defect analysis means for analyzing a defect based on information as to elements released from a defective portion of the inspection object by the irradiation with the electron beam, wherein the defect analysis means determines an analysis point based on a shape of the defect from among defect areas decided as one defect by the defect analysis means.
    Type: Application
    Filed: December 26, 2013
    Publication date: December 3, 2015
    Applicant: Hitachi High- Technologies Corporation
    Inventors: Kenji OBARA, Satoshi UMEHARA, Naomasa SUZUKI
  • Publication number: 20150294833
    Abstract: In order to provide a charged particle beam apparatus capable of high resolution measurement of a sample at any inclination angle, a charged particle beam apparatus for detecting secondary charged particles (115) generated by irradiating a sample (114) with a primary charged particle beam (110) is provided with a beam tilt lens (113) having: a yoke magnetic path member (132) and a lens coil (134) to focus the primary charged particle beam (110) on the sample (114); and a solenoid coil (133) configured to arrange the upper end on the side surface of the yoke magnetic path member (132) and arrange the bottom end between the tip end of the pole piece of the yoke magnetic path member (132) and the sample (114) in order to arbitrarily tilt the primary charged particle beam (110) on the sample (114).
    Type: Application
    Filed: October 21, 2013
    Publication date: October 15, 2015
    Applicant: Hitachi High-Technologies Corporation
    Inventors: Muneyuki Fukuda, Naomasa Suzuki, Akira Ikegami, Hideto Dohi, Momoyo Enyama, Tomoyasu Shojo
  • Patent number: 9159533
    Abstract: A lower pole piece of an electromagnetic superposition type objective lens is divided into an upper magnetic path and a lower magnetic path. A voltage nearly equal to a retarding voltage is applied to the lower magnetic path. An objective lens capable of acquiring an image with a higher resolution and a higher contrast than a conventional image is provided. An electromagnetic superposition type objective lens includes a magnetic path that encloses a coil, a cylindrical or conical booster magnetic path that surrounds an electron beam, a control magnetic path that is interposed between the coil and sample, an accelerating electric field control unit that accelerates the electron beam using a booster power supply, a decelerating electric field control unit that decelerates the electron beam using a stage power supply, and a suppression unit that suppresses electric discharge of the sample using a control magnetic path power supply.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: October 13, 2015
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Muneyuki Fukuda, Naomasa Suzuki, Tomoyasu Shojo, Noritsugu Takahashi
  • Publication number: 20150248944
    Abstract: Provided are an aberration corrector that reduces irregularity of a magnetic field of a multipole to obtain an image of high resolution and a charged particle beam apparatus using the same. The aberration corrector includes a plurality of magnetic field type poles, a ring that magnetically connects the plurality of poles with one another and an adjustment member disposed between the pole and the ring to adjust a spacing between the pole and the ring per pole.
    Type: Application
    Filed: January 28, 2015
    Publication date: September 3, 2015
    Inventors: Zhaohui Cheng, Hideo Kashima, Hiroaki Baba, Takeyoshi Ohashi, Tomonori Nakano, Kotoko Urano, Naomasa Suzuki
  • Patent number: 9123501
    Abstract: A diffraction aberration corrector formed by the multipole of the solenoid coil ring and having a function of adjusting the degree of orthogonality or axial shift of the vector potential with respect to the beam axis. In order to cause a phase difference, the diffraction aberration corrector that induces a vector potential, which is perpendicular to the beam axis and has a symmetrical distribution within the orthogonal plane with respect to the beam axis, is provided near the objective aperture and the objective lens. A diffracted wave traveling in a state of being inclined from the beam axis passes through the ring of the magnetic flux. Since the phase difference within the beam diameter is increased by the Aharonov-Bohm effect due to the vector potential, the intensity of the electron beam on the sample is suppressed.
    Type: Grant
    Filed: December 26, 2011
    Date of Patent: September 1, 2015
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Muneyuki Fukuda, Yoichi Ose, Mitsugu Sato, Hiroyuki Ito, Hiroshi Suzuki, Naomasa Suzuki
  • Publication number: 20150228443
    Abstract: A charged particle beam apparatus includes a charged particle beam source which irradiates a sample with a charged particle beam, an electromagnetic lens, a lens control electric source for controlling strength of a convergence effect of the electromagnetic lens; and a phase compensation circuit which is connected to the lens control electric source in parallel with the electromagnetic lens, and controls a lens current at the time of switching the strength of the convergence effect of the electromagnetic lens such that the lens current monotonically increases or monotonically decreases.
    Type: Application
    Filed: February 7, 2015
    Publication date: August 13, 2015
    Inventors: Kenichi MORITA, Sayaka TANIMOTO, Makoto SAKAKIBARA, Muneyuki FUKUDA, Naomasa SUZUKI, Kenji OBARA
  • Publication number: 20150136979
    Abstract: When a signal electron is detected by energy selection by combining and controlling retarding and boosting for observation of a deep hole, etc., the only way for focus adjustment is to use a change in magnetic field of an objective lens. However, since responsiveness of the change in magnetic field is poor, throughput reduces.
    Type: Application
    Filed: April 12, 2013
    Publication date: May 21, 2015
    Applicant: Hitachi High-Technologies Corporation
    Inventors: Ichiro Tachibana, Naomasa Suzuki
  • Publication number: 20140339425
    Abstract: A scanning electron beam device having: a deflector (5) for deflecting an electron beam (17) emitted from an electron source (1); an objective lens (7) for causing the electron beam to converge; a retarding electrode; a stage (9) for placing a wafer (16); and a controller (15); wherein the stage can be raised and lowered. In the low acceleration voltage region, the controller performs rough adjustment and fine adjustment of the focus in relation to the variation in the height of the wafer using electromagnetic focusing performed through excitation current adjustment of the objective lens. In the high acceleration voltage region, the controller performs rough adjustment of the focus in relation to the variation in the height of the wafer by mechanical focusing performed through raising and lowering of the stage, and performs fine adjustment by electrostatic focusing performed through adjustment of the retarding voltage.
    Type: Application
    Filed: November 26, 2012
    Publication date: November 20, 2014
    Inventors: Tasuku Yano, Yasunari Sohda, Muneyuki Fukuda, Katsunori Onuki, Hajime Kawano, Naomasa Suzuki
  • Publication number: 20140326879
    Abstract: A lower pole piece of an electromagnetic superposition type objective lens is divided into an upper magnetic path and a lower magnetic path. A voltage nearly equal to a retarding voltage is applied to the lower magnetic path. An objective lens capable of acquiring an image with a higher resolution and a higher contrast than a conventional image is provided. An electromagnetic superposition type objective lens includes a magnetic path that encloses a coil, a cylindrical or conical booster magnetic path that surrounds an electron beam, a control magnetic path that is interposed between the coil and sample, an accelerating electric field control unit that accelerates the electron beam using a booster power supply, a decelerating electric field control unit that decelerates the electron beam using a stage power supply, and a suppression unit that suppresses electric discharge of the sample using a control magnetic path power supply.
    Type: Application
    Filed: July 18, 2014
    Publication date: November 6, 2014
    Inventors: Muneyuki FUKUDA, Naomasa SUZUKI, Tomoyasu SHOJO, Noritsugu TAKAHASHI