Patents by Inventor Naomichi Miyakawa

Naomichi Miyakawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11871590
    Abstract: A thin film of metal oxide includes zinc (Zn); tin (Sn); silicon (Si); and oxygen (O). In terms of oxide, based on 100 mol % of total of oxides of the thin film, SnO2 is greater than 15 mol % but less than or equal to 95 mol %.
    Type: Grant
    Filed: January 19, 2021
    Date of Patent: January 9, 2024
    Assignee: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Hideo Hosono, Yoshitake Toda, Satoru Watanabe, Toshinari Watanabe, Kazuhiro Ito, Naomichi Miyakawa, Nobuhiro Nakamura
  • Publication number: 20230373863
    Abstract: The present invention relates to a cordierite sintered body including all elements belonging to an element group M1 consisting of calcium, magnesium, aluminum, and silicon, in which a content of the calcium is 0.06 mass % or more and 3.40 mass % or less in terms of oxide, a content of the magnesium is 12.9 mass % or more in terms of oxide, a content of an element M2, which is a metal element other than the elements belonging to the element group M1, is 1.5 mass % or less in terms of oxide, a porosity is 3.0 vol % or less, a four-point bending strength is 170 MPa or more, and a Weibull coefficient is 9.5 or more.
    Type: Application
    Filed: August 2, 2023
    Publication date: November 23, 2023
    Applicant: AGC Inc.
    Inventors: Shuhei OGAWA, Naomichi MIYAKAWA
  • Patent number: 11267761
    Abstract: The present invention relates to a light-transmitting ceramic sintered body which contains air voids having pore diameters of 1 ?m or more but less than 5 ?m at a density within the range of from 10 voids/mm3 to 4,000 voids/mm3 (inclusive), while having a closed porosity of from 0.01% by volume to 1.05% by volume (inclusive). With respect to this light-transmitting ceramic sintered body, a test piece having a thickness of 1.90 mm has an average transmittance of 70% or more in the visible spectrum wavelength range of 500-900 nm, and the test piece having a thickness of 1.90 mm has a sharpness of 60% or more at a comb width of 0.5 mm.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: March 8, 2022
    Assignee: AGC Inc.
    Inventors: Shuhei Ogawa, Naomichi Miyakawa, Yasuo Shinozaki, Haruhiko Yoshino, Kazunari Tohyama, Kazuto Ohkoshi
  • Publication number: 20210343961
    Abstract: A thin film of metal oxide includes zinc (Zn); tin (Sn); silicon (Si); and oxygen (O). In terms of oxide, based on 100 mol % of total of oxides of the thin film, SnO2 is greater than 15 mol % but less than or equal to 95 mol %.
    Type: Application
    Filed: January 19, 2021
    Publication date: November 4, 2021
    Applicant: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Hideo HOSONO, Yoshitake TODA, Satoru WATANABE, Toshinari WATANABE, Kazuhiro ITO, Naomichi MIYAKAWA, Nobuhiro NAKAMURA
  • Patent number: 11094909
    Abstract: A thin film of amorphous metal oxide includes zinc (Zn), silicon (Si) and oxygen (O), the atomic ratio of Zn/(Zn+Si) being 0.30 to 0.95.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: August 17, 2021
    Assignee: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Hideo Hosono, Yoshitake Toda, Toshinari Watanabe, Naomichi Miyakawa, Kazuhiro Ito, Satoru Watanabe, Akira Mitsui, Kazuto Ohkoshi
  • Patent number: 11075303
    Abstract: An oxide semiconductor compound includes gallium; and oxygen. An optical band gap is 3.4 eV or more. An electron Hall mobility obtained by performing a Hall measurement at a temperature of 300 K is 3 cm2/Vs or more.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: July 27, 2021
    Assignees: TOKYO INSTITUTE OF TECHNOLOGY, AGC Inc.
    Inventors: Hideo Hosono, Toshio Kamiya, Hideya Kumomi, Junghwan Kim, Nobuhiro Nakamura, Satoru Watanabe, Naomichi Miyakawa
  • Publication number: 20200287051
    Abstract: A thin film transistor of a top-gate-coplanar type includes a source, a drain, a gate, and a semiconductor layer, wherein the semiconductor layer has a first low-resistance region for the source and a second low-resistance region for the drain, wherein the source and the drain are electrically connected through the first low-resistance region, the semiconductor layer, and the second low-resistance region, and wherein the semiconductor layer is formed of an oxide-based semiconductor containing gallium (Ga), zinc (Zn), and tin (Sn).
    Type: Application
    Filed: May 20, 2020
    Publication date: September 10, 2020
    Applicant: AGC Inc.
    Inventors: Kunio MASUMO, Nao ISHIBASHI, Nobuhiro NAKAMURA, Satoru WATANABE, Kazuto OHKOSHI, Naomichi MIYAKAWA
  • Publication number: 20200287002
    Abstract: An oxide-based semiconductor compound including metal cations and oxygen, wherein hydride ions H? originally bonded with the metal cations have been replaced with fluorine ions F? and at least one of the fluorine ions F? is bonded with one to three of the metal cations.
    Type: Application
    Filed: May 20, 2020
    Publication date: September 10, 2020
    Applicants: AGC Inc., TOKYO INSTITUTE OF TECHNOLOGY
    Inventors: Hideo HOSONO, Junghwan Kim, Joonho Bang, Hideya Kumomi, Satoru Watanabe, Kazuto Ohkoshi, Naomichi Miyakawa, Nao Ishibashi, Kunio Masumo, Nobuhiro Nakamura
  • Publication number: 20200002231
    Abstract: The present invention relates to a light-transmitting ceramic sintered body which contains air voids having pore diameters of 1 ?m or more but less than 5 ?m at a density within the range of from 10 voids/mm3 to 4,000 voids/mm3 (inclusive), while having a closed porosity of from 0.01% by volume to 1.05% by volume (inclusive). With respect to this light-transmitting ceramic sintered body, a test piece having a thickness of 1.90 mm has an average transmittance of 70% or more in the visible spectrum wavelength range of 500-900 nm, and the test piece having a thickness of 1.90 mm has a sharpness of 60% or more at a comb width of 0.5 mm.
    Type: Application
    Filed: September 11, 2019
    Publication date: January 2, 2020
    Applicant: AGC Inc.
    Inventors: Shuhei OGAWA, Naomichi MIYAKAWA, Yasuo SHINOZAKI, Haruhiko YOSHINO, Kazunari TOHYAMA, Kazuto OHKOSHI
  • Patent number: 10446783
    Abstract: A light-emitting device includes a pair of first electrodes arranged separated from and opposing each other on a first surface of a substrate; a light-emitting layer arranged on at least one of the first electrodes; a second electrode arranged on the light-emitting layer; and a bridge layer connecting the first electrodes. The bridge layer is formed of a material having a resistance that falls within a range of 100 k? to 100 M?.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: October 15, 2019
    Assignees: JAPAN SCIENCE AND TECHNOLOGY AGENCY, TOKYO INSTITUTE OF TECHNOLOGY, Asahi Glass Company, Limited
    Inventors: Hideo Hosono, Yoshitake Toda, Nobuhiro Nakamura, Naomichi Miyakawa, Satoru Watanabe, Toshinari Watanabe
  • Publication number: 20190172605
    Abstract: Disclosed herein is an amorphous C12A7 electride thin film which has an electron density of greater than or equal to 2.0×1018 cm?3 and less than or equal to 2.3×1021 cm?3, and exhibits a light absorption at a photon energy position of 4.6 eV. Also disclosed herein is an amorphous thin film which is fabricated using a target made of a crystalline C12A7 electride, and containing an electride of an amorphous solid material includig calcium, aluminum, and oxygen, in which an Al/Ca molar ratio of the thin film is 0.5 to 4.7.
    Type: Application
    Filed: February 7, 2019
    Publication date: June 6, 2019
    Applicant: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Hideo HOSONO, Yoshitake TODA, Katsuro HAYASHI, Setsuro ITO, Satoru WATANABE, Naomichi MIYAKAWA, Toshinari WATANABE, Kazuhiro ITO
  • Patent number: 10249402
    Abstract: A C12A7 electride thin film fabrication method includes a step of forming an amorphous C12A7 electride thin film on a substrate by vapor deposition under an atmosphere with an oxygen partial pressure of less than 0.1 Pa using a target made of a crystalline C12A7 electride having an electron density within a range of 2.0×1018 cm?3 to 2.3×1021 cm?3.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: April 2, 2019
    Assignees: TOKYO INSTITUTE OF TECHNOLOGY, AGC Inc., JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Hideo Hosono, Yoshitake Toda, Katsuro Hayashi, Setsuro Ito, Satoru Watanabe, Naomichi Miyakawa, Toshinari Watanabe, Kazuhiro Ito
  • Publication number: 20190058142
    Abstract: A thin film of metal oxide includes zinc (Zn); tin (Sn); silicon (Si); and oxygen (O). In terms of oxide, based on 100 mol % of total of oxides of the thin film, SnO2 is greater than 15 mol % but less than or equal to 95 mol %.
    Type: Application
    Filed: October 24, 2018
    Publication date: February 21, 2019
    Applicants: JAPAN SCIENCE AND TECHNOLOGY AGENCY, TOKYO INSTITUTE OF TECHNOLOGY, AGC Inc.
    Inventors: Hideo HOSONO, Yoshitake TODA, Satoru WATANABE, Toshinari WATANABE, Kazuhiro ITO, Naomichi MIYAKAWA, Nobuhiro NAKAMURA
  • Publication number: 20180374959
    Abstract: An oxide semiconductor compound includes gallium; and oxygen. An optical band gap is 3.4 eV or more. An electron Hall mobility obtained by performing a Hall measurement at a temperature of 300 K is 3 cm2/Vs or more.
    Type: Application
    Filed: August 30, 2018
    Publication date: December 27, 2018
    Applicants: TOKYO INSTITUTE OF TECHNOLOGY, AGC Inc.
    Inventors: Hideo HOSONO, Toshio KAMIYA, Hideya KUMOMI, Junghwan KIM, Nobuhiro NAKAMURA, Satoru WATANABE, Naomichi MIYAKAWA
  • Patent number: 10128457
    Abstract: A light-emitting device having a light-extraction structure includes: a first electrode; a second electrode; a light-emitting layer disposed between the first electrode and the second electrode; and an inorganic-material-based layer disposed between the first electrode and the light-emitting layer or between the second electrode and the light-emitting layer. The inorganic-material-based layer has thickness of 100 nm or more and has conductivity of 10?6 ??1 cm?1 or more and 100 ??1 cm?1 or less.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: November 13, 2018
    Assignee: AGC Inc.
    Inventors: Nobuhiro Nakamura, Naomichi Miyakawa, Satoru Watanabe, Toshinari Watanabe
  • Patent number: 9881773
    Abstract: A production method of an electroconductive mayenite compound having an electron density greater than or equal to 5×1020 cm?3 includes preparing an object of processing containing a mayenite compound or a precursor of a mayenite compound, placing aluminum foil on at least part of a surface of the object of processing, and retaining the object of processing at temperatures falling within the range of 1080° C. to 1450° C. in a low oxygen partial pressure atmosphere.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: January 30, 2018
    Assignee: Asahi Glass Company, Limited
    Inventors: Kazuhiro Ito, Satoru Watanabe, Toshinari Watanabe, Naomichi Miyakawa
  • Patent number: 9879338
    Abstract: A method of manufacturing an electrically conductive mayenite compound, includes preparing a body to be processed including a mayenite compound; and placing the body to be processed in the presence of carbon monoxide gas and aluminum vapor supplied from an aluminum source without being in contact with the aluminum source and retaining the body to be processed at a temperature range of 1080° C. to 1450° C. under a reducing atmosphere.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: January 30, 2018
    Assignee: Asahi Glass Company, Limited
    Inventors: Kazuhiro Ito, Satoru Watanabe, Toshinari Watanabe, Naomichi Miyakawa
  • Publication number: 20170186989
    Abstract: A light-emitting device includes a pair of first electrodes arranged separated from and opposing each other on a first surface of a substrate; a light-emitting layer arranged on at least one of the first electrodes; a second electrode arranged on the light-emitting layer; and a bridge layer connecting the first electrodes. The bridge layer is formed of a material having a resistance that falls within a range of 100 k? to 100 M?.
    Type: Application
    Filed: March 16, 2017
    Publication date: June 29, 2017
    Applicants: JAPAN SCIENCE AND TECHNOLOGY AGENCY, TOKYO INSTITUTE OF TECHNOLOGY, Asahi Glass Company, Limited
    Inventors: Hideo HOSONO, Yoshitake TODA, Nobuhiro NAKAMURA, Naomichi MIYAKAWA, Satoru WATANABE, Toshinari WATANABE
  • Publication number: 20170186990
    Abstract: A light-emitting device having a light-extraction structure includes: a first electrode; a second electrode; a light-emitting layer disposed between the first electrode and the second electrode; and an inorganic-material-based layer disposed between the first electrode and the light-emitting layer or between the second electrode and the light-emitting layer. The inorganic-material-based layer has thickness of 100 nm or more and has conductivity of 10?6 ??1cm?1 or more and 100 ??1cm?1 or less.
    Type: Application
    Filed: March 15, 2017
    Publication date: June 29, 2017
    Applicant: Asahi Glass Company, Limited
    Inventors: Nobuhiro NAKAMURA, Naomichi MIYAKAWA, Satoru WATANABE, Toshinari WATANABE
  • Publication number: 20170186984
    Abstract: A thin film of metal oxide includes zinc (Zn); tin (Sn); silicon (Si); and oxygen (O). In terms of oxide, based on 100 mol % of total of oxides of the thin film, SnO2 is greater than 15 mol % but less than or equal to 95 mol %.
    Type: Application
    Filed: March 16, 2017
    Publication date: June 29, 2017
    Applicants: JAPAN SCIENCE AND TECHNOLOGY AGENCY, TOKYO INSTITUTE OF TECHNOLOGY, Asahi Glass Company, Limited
    Inventors: Hideo HOSONO, Yoshitake TODA, Satoru WATANABE, Toshinari WATANABE, Kazuhiro ITO, Naomichi MIYAKAWA, Nobuhiro NAKAMURA