Patents by Inventor Naotaka Adachi

Naotaka Adachi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7907767
    Abstract: The invention is intended to obtain optimal shim values even if slice planes are slanted with respect to the system-inherent coordinate system. The section for setting a plane for calculating shim values sets planes perpendicular to and a plane parallel with a slice plane in a system of coordinates x?, y?, and z? perpendicular to the slice plane. The section for calculating shim values obtains shim values with regard to this slice plane in this coordinate system, based on data acquired by the data acquiring section. The coordinates converting section converts the thus obtained shim values to shim values in the system-inherent x-y-z coordinate system of the MRI apparatus.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: March 15, 2011
    Assignee: GE Medical Systems Global Technology Company, LLC
    Inventors: Mitsuhiro Bekku, Naotaka Adachi
  • Publication number: 20070280524
    Abstract: The invention is intended to obtain optimal shim values even if slice planes are slanted with respect to the system-inherent coordinate system. The section for setting a plane for calculating shim values sets planes perpendicular to and a plane parallel with a slice plane in a system of coordinates x?, y?, and z? perpendicular to the slice plane. The section for calculating shim values obtains shim values with regard to this slice plane in this coordinate system, based on data acquired by the data acquiring section. The coordinates converting section converts the thus obtained shim values to shim values in the system-inherent x-y-z coordinate system of the MRI apparatus.
    Type: Application
    Filed: June 4, 2007
    Publication date: December 6, 2007
    Inventors: Mitsuhiro Bekku, Naotaka Adachi
  • Patent number: 6819104
    Abstract: An object of the present invention is to produce images devoid of band artifacts. Data acquisition in SSFP is repeated N times (where N denotes the power of 2) in order to acquire data fv(k), which ranges from data fv(0) to data fv(N−1), from views v constituting a k-space. At this time, the phase of an RF pulse is varied based on an expression of 360°·v·k/N. If an operator designates Fourier transform imaging, a Fourier transform is performed on data fv(k) relative to each of the phases indicated by the RF pulse in order to produce data Fv(n). If the operator does not designate Fourier transform imaging, the data fv(k) is regarded as the data Fv(n) as it is. Any of at least either of weighted addition and MIP processing and root-mean-square conversion selected by the operator is then performed on the data Fv(n) in order to produce data Av. An image is reconstructed based on the data Av.
    Type: Grant
    Filed: June 20, 2002
    Date of Patent: November 16, 2004
    Assignee: GE Medical Systems Global Technology Company, LLC
    Inventors: Aki Yamazaki, Yoshihiro Oda, Naotaka Adachi
  • Publication number: 20020196019
    Abstract: An object of the present invention is to produce images devoid of band artifacts. Data acquisition in SSFP is repeated N times (where N denotes the power of 2) in order to acquire data fv(k), which ranges from data fv(0) to data fv(N−1), from views v constituting a k-space. At this time, the phase of an RF pulse is varied based on an expression of 360°·v·k/N. If an operator designates Fourier transform imaging, a Fourier transform is performed on data fv(k) relative to each of the phases indicated by the RF pulse in order to produce data Fv(n). If the operator does not designate Fourier transform imaging, the data fv(k) is regarded as the data Fv(n) as it is. Any of at least either of weighted addition and MIP processing and root-mean-square conversion selected by the operator is then performed on the data Fv(n) in order to produce data Av. An image is reconstructed based on the data Av.
    Type: Application
    Filed: June 20, 2002
    Publication date: December 26, 2002
    Inventors: Aki Yamazaki, Yoshihiro Oda, Naotaka Adachi