Patents by Inventor Naoto Umehara

Naoto Umehara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12002942
    Abstract: A method for manufacturing a rechargeable battery includes forming a mixture layer and an insulating layer on an electrode substrate having an edge extending in a specified direction so that an exposed portion where the electrode substrate is exposed extends between the edge and the insulating layer; pressing the mixture layer; and stretching an extension portion, located between the edge and the mixture layer, and the insulating layer in the specified direction. The stretching includes applying a stress greater than or equal to yield stress of the electrode substrate or greater than or equal to 0.2% proof stress of the electrode substrate and less than tensile strength of the electrode substrate to the extension portion, and applying a stress greater than or equal to yield stress of the insulating layer or greater than or equal to 0.2% proof stress of the insulating layer to the insulating layer.
    Type: Grant
    Filed: November 30, 2022
    Date of Patent: June 4, 2024
    Assignees: PRIMEARTH EV ENERGY CO., LTD., TOYOTA JIDOSHA KABUSHIKI KAISHA, PRIME PLANET ENERGY & SOLUTIONS, INC.
    Inventors: Masakazu Umehara, Naomichi Ishikawa, Naoto Ooshiro, Yuuki Kudou, Hideki Hayashi, Hiroki Yamada, Naoya Kishimoto
  • Patent number: 11929481
    Abstract: A method for manufacturing a rechargeable battery includes forming a mixture layer and an insulating layer on an electrode substrate having an edge extending in a specified direction so that an exposed portion where the electrode substrate is exposed extends between the edge and the insulating layer; pressing the mixture layer; and stretching an extension portion, located between the edge and the mixture layer, and the insulating layer in the specified direction. The stretching includes applying a stress greater than or equal to yield stress of the electrode substrate or greater than or equal to 0.2% proof stress of the electrode substrate and less than tensile strength of the electrode substrate to the extension portion, and applying a stress greater than or equal to yield stress of the insulating layer or greater than or equal to 0.2% proof stress of the insulating layer to the insulating layer.
    Type: Grant
    Filed: November 30, 2022
    Date of Patent: March 12, 2024
    Assignees: PRIMEARTH EV ENERGY CO., LTD., TOYOTA JIDOSHA KABUSHIKI KAISHA, PRIME PLANET ENERGY & SOLUTIONS, INC.
    Inventors: Masakazu Umehara, Naomichi Ishikawa, Naoto Ooshiro, Yuuki Kudou, Hideki Hayashi, Hiroki Yamada, Naoya Kishimoto
  • Patent number: 10847376
    Abstract: A first material layer, a second material layer, and a photoresist layer may be formed over a substrate. The second material layer may be patterned by transfer of a lithographic pattern therethrough. A conformal spacer layer may be formed over the patterned second material layer in a chamber enclosure of an in-situ deposition-etch apparatus. Spacer films may be formed by anisotropically etching the conformal spacer layer in the chamber enclosure of the in-situ deposition-etch apparatus. The first material layer may be anisotropically etched using a combination of the patterned second material layer and the spacer films as an etch mask in the in-situ deposition-etch apparatus. A high fidelity pattern may be transferred into the first material layer with reduced line edge roughness, reduced line width roughness, and without enlargement of lateral dimensions of openings in the first material layer.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: November 24, 2020
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Yusuke Osawa, Syo Fukata, Naoto Umehara, Sung Tae Lee
  • Publication number: 20200006080
    Abstract: A first material layer, a second material layer, and a photoresist layer may be formed over a substrate. The second material layer may be patterned by transfer of a lithographic pattern therethrough. A conformal spacer layer may be formed over the patterned second material layer in a chamber enclosure of an in-situ deposition-etch apparatus. Spacer films may be formed by anisotropically etching the conformal spacer layer in the chamber enclosure of the in-situ deposition-etch apparatus. The first material layer may be anisotropically etched using a combination of the patterned second material layer and the spacer films as an etch mask in the in-situ deposition-etch apparatus. A high fidelity pattern may be transferred into the first material layer with reduced line edge roughness, reduced line width roughness, and without enlargement of lateral dimensions of openings in the first material layer.
    Type: Application
    Filed: April 10, 2019
    Publication date: January 2, 2020
    Inventors: Yusuke OSAWA, Syo FUKATA, Naoto UMEHARA, Sung Tae LEE
  • Patent number: 8030216
    Abstract: A plasma processing method, which enables the etching controllability for a high-dielectric-constant insulating film to be improved. A substrate having a high-dielectric-constant gate insulating film and a hard mask formed thereon is subjected to etching processing using a plasma of a processing gas containing a noble gas and a reducing gas.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: October 4, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Shinichi Kozuka, Naoto Umehara
  • Publication number: 20080261404
    Abstract: A plasma processing method, which enables the etching controllability for a high-dielectric-constant insulating film to be improved. A substrate having a high-dielectric-constant gate insulating film and a hard mask formed thereon is subjected to etching processing using a plasma of a processing gas containing a noble gas and a reducing gas.
    Type: Application
    Filed: June 13, 2008
    Publication date: October 23, 2008
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Shinichi Kozuka, Naoto Umehara
  • Patent number: 7405160
    Abstract: A plasma processing method, which enables the etching controllability for a high-dielectric-constant insulating film to be improved. A substrate having a high-dielectric-constant gate insulating film and a hard mask formed thereon is subjected to etching processing using a plasma of a processing gas containing a noble gas and a reducing gas.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: July 29, 2008
    Assignee: Tokyo Electron Limited
    Inventors: Shinichi Kozuka, Naoto Umehara
  • Publication number: 20070134938
    Abstract: A plasma processing method, which enables the etching controllability for a high-dielectric-constant insulating film to be improved. A substrate having a high-dielectric-constant gate insulating film and a hard mask formed thereon is subjected to etching processing using a plasma of a processing gas containing a noble gas and a reducing gas.
    Type: Application
    Filed: December 13, 2005
    Publication date: June 14, 2007
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Shinichi Kozuka, Naoto Umehara