Patents by Inventor Nariaki Moriyama

Nariaki Moriyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9452940
    Abstract: Disclosed is lithium titanate having excellent rate properties and useful for electricity storage devices, which is produced by preparing lithium titanate secondary particles that are aggregates of lithium titanate primary particles and forming at least macro-pores on the surfaces of the secondary particles. The lithium titanate can be produced by a process which comprises drying and granulating a slurry comprising crystalline titan oxide, a titanic acid compound and a lithium compound and firing the granulated product to thereby produce lithium titanate secondary particles, wherein (1) the crystalline titan oxide to be used comprises at least two types of crystalline titan oxide particles having different average particle diameters from each other, and/or (2) the crystalline titan oxide is used in an amount at least four-fold larger than that of the titanic acid compound in terms of TiO2 content by weight.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: September 27, 2016
    Assignee: ISHIHARA SANGYO KAISHA, LTD.
    Inventors: Nariaki Moriyama, Masatoshi Honma, Kazuyoshi Takeshima, Yusuke Okuda, Naoya Nagahashi
  • Publication number: 20160009567
    Abstract: Disclosed is lithium titanate having excellent rate properties and useful for electricity storage devices, which is produced by preparing lithium titanate secondary particles that are aggregates of lithium titanate primary particles and forming at least macro-pores on the surfaces of the secondary particles. The lithium titanate can be produced by a process which comprises drying and granulating a slurry comprising crystalline titan oxide, a titanic acid compound and a lithium compound and firing the granulated product to thereby produce lithium titanate secondary particles, wherein (1) the crystalline titan oxide to be used comprises at least two types of crystalline titan oxide particles having different average particle diameters from each other, and/or (2) the crystalline titan oxide is used in an amount at least four-fold larger than that of the titanic acid compound in terms of TiO2 content by weight.
    Type: Application
    Filed: July 29, 2015
    Publication date: January 14, 2016
    Inventors: Nariaki MORIYAMA, Masatoshi HONMA, Kazuyoshi TAKESHIMA, Yusuke OKUDA, Naoya NAGAHASHI
  • Patent number: 9126847
    Abstract: Disclosed is lithium titanate having excellent rate properties and useful for electricity storage devices, which is produced by preparing lithium titanate secondary particles that are aggregates of lithium titanate primary particles and forming at least macro-pores on the surfaces of the secondary particles. The lithium titanate can be produced by a process which comprises drying and granulating a slurry comprising crystalline titan oxide, a titanic acid compound and a lithium compound and firing the granulated product to thereby produce lithium titanate secondary particles, wherein (1) the crystalline titan oxide to be used comprises at least two types of crystalline titan oxide particles having different average particle diameters from each other, and/or (2) the crystalline titan oxide is used in an amount at least four-fold larger than that of the titanic acid compound in terms of TiO2 content by weight.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: September 8, 2015
    Assignee: ISHIHARA SANGYO KAISHA, LTD.
    Inventors: Nariaki Moriyama, Masatoshi Honma, Kazuyoshi Takeshima, Yusuke Okuda, Naoya Nagahashi
  • Patent number: 8724293
    Abstract: Disclosed is a storage device comprising a positive electrode material containing graphite; a negative electrode material containing an oxide of at least one metal element selected from Ti, Zr, V, Cr, Mo, Mn, Fe, Co, Ni, Cu, Zn, Sn, Sb, Bi, W and Ta, which may preferably contains a metal oxide containing at least Ti as a metal element; and an electrolyte solution. This storage device has high capacitance and high discharge voltage, thereby having high energy. Consequently, this storage device can have high energy density, while being excellent in cycle performances and rate performances.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: May 13, 2014
    Assignee: Ishihara Sangyo Kaisha, Ltd.
    Inventors: Masaki Yoshio, Toshihiko Kawamura, Nariaki Moriyama, Masatoshi Honma, Tokuo Suita, Hirofumi Taniguchi, Tomoyuki Sotokawa
  • Patent number: 8652351
    Abstract: This invention provides a titanic acid compound-type electrode active material having a high battery capacity and, at the same time, having excellent cycle characteristics. The titanic acid compound exhibits an X-ray diffraction pattern corresponding to a bronze-type titanium dioxide except for a peak for a (200) plane and having a peak intensity ratio between the (001) plane and the (200) plane, i.e., I(200)/I(001), of not more than 0.2. The titanic acid compound may be produced by heat dehydrating H2Ti3O7 at a temperature in the range of 200 to 330° C., by heat dehydrating H2Ti4O9 at a temperature in the range of 250 to 650° C., or by heat dehydrating H2Ti5O11 at a temperature in the range of 200 to 600° C.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: February 18, 2014
    Assignee: Ishihara Sangyo Kaisha, Ltd.
    Inventors: Tomoyuki Sotokawa, Nariaki Moriyama, Masatoshi Honma, Tokuo Suita
  • Publication number: 20120070744
    Abstract: Disclosed is lithium titanate having excellent rate properties and useful for electricity storage devices, which is produced by preparing lithium titanate secondary particles that are aggregates of lithium titanate primary particles and forming at least macro-pores on the surfaces of the secondary particles. The lithium titanate can be produced by a process which comprises drying and granulating a slurry comprising crystalline titan oxide, a titanic acid compound and a lithium compound and firing the granulated product to thereby produce lithium titanate secondary particles, wherein (1) the crystalline titan oxide to be used comprises at least two types of crystalline titan oxide particles having different average particle diameters from each other, and/or (2) the crystalline titan oxide is used in an amount at least four-fold larger than that of the titanic acid compound in terms of TiO2 content by weight.
    Type: Application
    Filed: May 25, 2010
    Publication date: March 22, 2012
    Inventors: Nariaki Moriyama, Masatoshi Honma, Kazuyoshi Takeshima, Yusuke Okuda, Naoya Nagahashi
  • Publication number: 20110073804
    Abstract: This invention provides a titanic acid compound-type electrode active material having a high battery capacity and, at the same time, having excellent cycle characteristics. The titanic acid compound exhibits an X-ray diffraction pattern corresponding to a bronze-type titanium dioxide except for a peak for a (200) plane and having a peak intensity ratio between the (001) plane and the (200) plane, i.e., I(200)/I(001), of not more than 0.2. The titanic acid compound may be produced by heat dehydrating H2Ti3O7 at a temperature in the range of 200 to 330° C., by heat dehydrating H2Ti4O9 at a temperature in the range of 250 to 650° C., or by heat dehydrating H2Ti5O11 at a temperature in the range of 200 to 600° C.
    Type: Application
    Filed: August 27, 2008
    Publication date: March 31, 2011
    Inventors: Tomoyuki Sotokawa, Nariaki Moriyama, Masatoshi Homma, Tokuo Suita
  • Publication number: 20100046143
    Abstract: Disclosed is a storage device comprising a positive electrode material containing graphite; a negative electrode material containing an oxide of at least one metal element selected from Ti, Zr, V, Cr, Mo, Mn, Fe, Co, Ni, Cu, Zn, Sn, Sb, Bi, W and Ta, which may preferably contains a metal oxide containing at least Ti as a metal element; and an electrolyte solution. This storage device has high capacitance and high discharge voltage, thereby having high energy. Consequently, this storage device can have high energy density, while being excellent in cycle performances and rate performances.
    Type: Application
    Filed: October 19, 2007
    Publication date: February 25, 2010
    Inventors: Masaki Yoshio, Toshihiko Kawamura, Nariaki Moriyama, Masatoshi Honma, Tokuo Suita, Hirofumi Taniguchi, Tomoyuki Sotokawa
  • Patent number: 5451245
    Abstract: Acicular magnetic iron particles comprising acicular iron substrate particles having first layer consisting of at least one of hydrous oxides and anhydrous oxides of aluminum and zirconium and mixtures thereof and second layer consisting of hydrous oxides and anhydrous oxides of aluminum and mixtures thereof coated on the surfaces of the particles are produced by coating the surfaces of hydrated iron oxide particles as substrate with at least one of aluminum compounds and zirconium compounds, then heating the coated substrate particles to convert to hematite particles, thereafter coating the surfaces of the resultant hematite substrate particles with at least one of aluminum compounds, and then reducing under heat the coated hematite particles.
    Type: Grant
    Filed: March 4, 1994
    Date of Patent: September 19, 1995
    Assignee: Ishihara Sangyo Kaisha, Ltd.
    Inventors: Eiji Nomura, Toshihiko Kawamura, Kenji Hatanaka, Nariaki Moriyama