Patents by Inventor Narutoshi Sugita

Narutoshi Sugita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10622647
    Abstract: A fuel cell includes a first separator including a reactant gas buffer portion which includes a first buffer region and a second buffer region. The first buffer region has a first depth in the stacking direction. First embossed portions are formed in the first buffer region. Each of the first embossed portions has a first diameter and a first radius of a corner at a distal end of each of the first embossed portions. The second buffer region has a second depth in the stacking direction larger than the first depth. Second embossed portions are formed in the second buffer region. Each of the second embossed portions has a second diameter and a second radius of a corner at a distal end of each of the second embossed portions. The second diameter is smaller than the first diameter or the second radius is smaller than the second diameter.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: April 14, 2020
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Naoki Yamano, Narutoshi Sugita, Jun Kondo
  • Patent number: 10186718
    Abstract: A fuel cell includes a membrane electrode assembly, a first metal separator, a second metal separator, linear protrusions, and embossed protrusions. The first metal separator is stacked on the membrane electrode assembly. The second metal separator is stacked on the first metal separator to define a coolant channel between the metal separators. The first metal separator includes wave-shaped protrusions projecting from the first metal separator by a first height to define to form the coolant channel. The linear protrusions are connected to both distal ends of each of the wave-shaped protrusions. The linear protrusions project from the first metal separator by a second height smaller than the first height. The embossed protrusions are connected to tip ends of the linear protrusions. The embossed protrusions project from the first metal separator by a third height larger than the second height to be in contact with the second metal separator.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: January 22, 2019
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Naoki Yamano, Toshiki Kawamura, Shuhei Goto, Narutoshi Sugita
  • Publication number: 20170117559
    Abstract: A fuel cell includes a membrane electrode assembly, a first metal separator, a second metal separator, linear protrusions, and embossed protrusions. The first metal separator is stacked on the membrane electrode assembly. The second metal separator is stacked on the first metal separator to define a coolant channel between the metal separators. The first metal separator includes wave-shaped protrusions projecting from the first metal separator by a first height to define to form the coolant channel. The linear protrusions are connected to both distal ends of each of the wave-shaped protrusions. The linear protrusions project from the first metal separator by a second height smaller than the first height. The embossed protrusions are connected to tip ends of the linear protrusions. The embossed protrusions project from the first metal separator by a third height larger than the second height to be in contact with the second metal separator.
    Type: Application
    Filed: October 21, 2016
    Publication date: April 27, 2017
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Naoki YAMANO, Toshiki KAWAMURA, Shuhei GOTO, Narutoshi SUGITA
  • Publication number: 20170110745
    Abstract: A fuel cell includes a first separator including a reactant gas buffer portion which includes a first buffer region and a second buffer region. The first buffer region has a first depth in the stacking direction. First embossed portions are formed in the first buffer region. Each of the first embossed portions has a first diameter and a first radius of a corner at a distal end of each of the first embossed portions. The second buffer region has a second depth in the stacking direction larger than the first depth. Second embossed portions are formed in the second buffer region. Each of the second embossed portions has a second diameter and a second radius of a corner at a distal end of each of the second embossed portions. The second diameter is smaller than the first diameter or the second radius is smaller than the second diameter.
    Type: Application
    Filed: October 14, 2016
    Publication date: April 20, 2017
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Naoki YAMANO, Narutoshi SUGITA, Jun KONDO
  • Patent number: 9590254
    Abstract: In a power generation unit of a fuel cell stack, bosses of a first metal separator and bosses of a second metal separator are provided to sandwich a first membrane electrode assembly at first sandwiching positions on both sides of the first membrane electrode assembly, oppositely to each other in a stacking direction. Bosses of a second metal separator and bosses of a third metal separator are provided to sandwich a second membrane electrode assembly at second sandwiching positions on both sides of the second membrane electrode assembly, oppositely to each other in the stacking direction. Bosses of the first metal separator and bosses of the third metal separator protrude toward a coolant flow field, and contact each other at positions offset from the first and second sandwiching positions.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: March 7, 2017
    Assignee: Honda Motor Co., Ltd.
    Inventors: Seiji Sugiura, Narutoshi Sugita
  • Patent number: 9431673
    Abstract: A cell unit of a fuel cell includes a first membrane electrode assembly, a first metal separator, a second membrane electrode assembly, and a second metal separator. A resin frame member is provided integrally with an outer circumference of the first membrane electrode assembly. An oxygen-containing gas supply passage, a fuel gas supply passage, a coolant supply passage, an oxygen-containing gas discharge passage, a fuel gas discharge passage, and a coolant discharge passage extend through the resin frame member in a stacking direction. At each of both ends of the resin frame member in a longitudinal direction, a pair of projections are provided. The projections protrude toward both sides in a lateral direction.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: August 30, 2016
    Assignee: Honda Motor Co., Ltd.
    Inventors: Narutoshi Sugita, Shuhei Goto, Kentaro Ishida, Tetsuya Nakamura
  • Patent number: 9160016
    Abstract: A fuel cell includes a membrane-electrode assembly and a separator. The membrane-electrode assembly has an electrolyte and a pair of electrodes that are disposed on respective sides of the electrolyte. The membrane-electrode assembly and the separator are stacked in a stacking direction. A reaction surface of the membrane-electrode assembly is in a vertical direction along a direction of gravity and has a shape having a longer dimension in a horizontal direction. The fuel cell is provided with a reactant gas passage to allow a reactant gas to flow along a longitudinal direction of the reaction surface. The reactant gas is an oxidant gas or a fuel gas. A drain channel to allow product water from the reactant gas passage to be drained away is disposed between the membrane-electrode assembly and the separator and under the reaction surface in the direction of gravity.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: October 13, 2015
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Kentaro Ishida, Akihiro Matsui, Narutoshi Sugita, Hayato Kaji
  • Patent number: 9083017
    Abstract: A fuel cell stack includes a plurality of unit cells stacked in a stacking direction substantially along a direction of gravity. Each of the plurality of unit cells includes a first metal separator, a second metal separator, and a membrane electrode assembly sandwiched between the first metal separator and the second metal. A reactant gas channel allows a reactant gas to flow along a surface of each of the first and second metal separators. A reactant gas inlet manifold and a reactant gas outlet manifold allow the reactant gas to flow the reactant gas inlet manifold and the reactant gas outlet manifold in the stacking direction. A bridge portion forms a connection channel to connect at least the reactant gas outlet manifold to the reactant gas channel. The bridge portion includes a guide portion to break a continuity of condensed water.
    Type: Grant
    Filed: January 17, 2011
    Date of Patent: July 14, 2015
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Hiroyuki Tanaka, Narutoshi Sugita, Kentaro Ishida, Keisuke Ando
  • Patent number: 9065089
    Abstract: A fuel cell includes a membrane electrode assembly, a first separator, and a second separator. The membrane electrode assembly includes a first electrode, a second electrode, a resin frame member, and an electrolyte membrane. The resin frame member includes a first surface, a second surface, a first buffer portion, and a second buffer portion. The first buffer portion is provided on the first surface of the resin frame member. The second buffer portion is provided on the second surface of the resin frame member. The second buffer portion is independent from the first buffer portion.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: June 23, 2015
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Kentaro Ishida, Narutoshi Sugita, Shuhei Goto
  • Patent number: 8999592
    Abstract: A cell unit of a fuel cell includes a first membrane electrode assembly, a first metal separator, a second membrane electrode assembly, and a second metal separator. Frames are provided at outer circumferences of the first and second membrane electrode assemblies. An oxygen-containing gas supply passage and a fuel gas supply passage, and an oxygen-containing gas discharge passage and a fuel gas discharge passage are provided in one pair of opposite sides of the frames, and a pair of coolant supply passages and a pair of coolant discharge passages are provided in the other pair of opposite sides of the frames at distances from one another.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: April 7, 2015
    Assignee: Honda Motor Co., Ltd.
    Inventors: Narutoshi Sugita, Shuhei Goto, Kentaro Ishida, Tetsuya Nakamura
  • Patent number: 8865366
    Abstract: An assembling operation of a fuel cell is effectively simplified. With the simple and economical structure, the desired sealing function is achieved. The fuel cell (10) includes a membrane electrode assembly (14) and first and second metal separators (16, 18) sandwiching the membrane electrode assembly (14). Connection channels (28a, 28b) are provided on the first metal separator (16). The connection channels (28a, 28b) connect the oxygen-containing gas supply passage (20a) and the oxygen-containing gas discharge passage (20b) to the oxygen-containing gas flow field (26). The membrane electrode assembly (14) has first overlapping portions (66a, 66b) overlapped on the connection channels (28a, 28b) for sealing the connection channels (28a, 28b). The first overlapping portions (66a, 66b) comprise, in effect, a gas diffusion layer.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: October 21, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Narutoshi Sugita, Katsuhiko Kohyama, Shuhei Goto, Hiroshi Shinkai, Hiroyuki Tanaka, Takaki Nakagawa
  • Patent number: 8846264
    Abstract: A cell unit of a fuel cell includes a first membrane electrode assembly, a first metal separator, a second membrane electrode assembly, and a second metal separator. Resin frame members are provided at the outer ends of the first and second membrane electrode assemblies. Coolant connection channels including a plurality of grooves is formed in each of the resin frame members. The grooves of the coolant connection channels of the cell unit and grooves of coolant connection channels of a cell unit that is adjacent to the cell unit in the stacking direction are offset from each other, and are not overlapped with each other in the stacking direction.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: September 30, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kentaro Ishida, Shuhei Goto, Narutoshi Sugita, Tetsuya Nakamura
  • Patent number: 8802312
    Abstract: A fuel cell according to the present invention includes a power generation unit. The power generation unit is formed by stacking a first metal separator, a first membrane electrode assembly, a second metal separator, a second membrane electrode assembly, and a third metal separator. The number of flow grooves in a first oxygen-containing gas flow field is different from the number of flow grooves in a second oxygen-containing gas flow field. The first oxygen-containing gas flow field and the second oxygen-containing gas flow field have the same length, and the flow grooves in the first oxygen-containing gas flow field and the flow grooves in the second oxygen-containing gas flow field have the same depth.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: August 12, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Narutoshi Sugita, Masaru Oda, Masaaki Sakano, Norimasa Kawagoe, Takashi Kosaka
  • Patent number: 8778554
    Abstract: A fuel cell includes a membrane electrode assembly, and a first separator and a second separator sandwiching the membrane electrode assembly. The membrane electrode assembly has a resin frame member, and an inlet buffer is provided on the resin frame member adjacent to the fuel gas supply passage. The inlet buffer includes a first buffer area adjacent to the fuel gas supply passage and a second buffer area adjacent to a fuel gas flow field. The opening dimension of the first buffer area in a stacking direction is larger than the opening dimension of the second buffer area in the stacking direction.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: July 15, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Shuhei Goto, Narutoshi Sugita, Kentaro Ishida, Tetsuya Nakamura
  • Patent number: 8637204
    Abstract: In a solid polymer electrolyte membrane [film] type fuel cell of the invention, where a pair of electrodes are provided on opposite sides of a solid polymer electrolyte membrane [film], and the outside thereof is clamped by a pair of separators, and nonconductive picture frame-shaped members 61 are arranged at the outer edge portions of the separators, for allowing increase and decrease of a space between separators, while sealing a gap between the separators.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: January 28, 2014
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Toshihiko Suenaga, Narutoshi Sugita, Takayuki Ogawa, Keisuke Andou, Masajiro Inoue
  • Patent number: 8574781
    Abstract: A fuel cell stack. A fuel cell stack, an example of the fuel cell stack, is configured by alternately overlaying first electricity generating units and second electricity generating units in the horizontal direction. The first electricity units are each provided with a first fuel gas flow path, a first oxidant gas flow path, a second fuel gas flow path, and a second oxidant gas flow path, and the flow paths are set to the same phase in the overlaying direction. The second electricity generating units are each provided with a first fuel gas flow path, a first oxidant gas flow path, a second fuel gas flow path, and a second oxidant gas flow path which are set to the same phase in the overlaying direction and are set to a phase different from the phase of the flow paths of the first electricity generating units.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: November 5, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Shuhei Goto, Narutoshi Sugita, Masaru Oda, Yasuhiro Watanabe
  • Publication number: 20130252131
    Abstract: A fuel cell includes a membrane electrode assembly, a first separator, and a second separator. The membrane electrode assembly includes a first electrode, a second electrode, a resin frame member, and an electrolyte membrane. The resin frame member includes a first surface, a second surface, a first buffer portion, and a second buffer portion. The first buffer portion is provided on the first surface of the resin frame member. The second buffer portion is provided on the second surface of the resin frame member. The second buffer portion is independent from the first buffer portion.
    Type: Application
    Filed: March 22, 2013
    Publication date: September 26, 2013
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Kentaro ISHIDA, Narutoshi SUGITA, Shuhei GOTO
  • Publication number: 20120321987
    Abstract: A fuel cell includes a membrane electrode assembly, and a first separator and a second separator sandwiching the membrane electrode assembly. The membrane electrode assembly has a resin frame member, and an inlet buffer is provided on the resin frame member adjacent to the fuel gas supply passage. The inlet buffer includes a first buffer area adjacent to the fuel gas supply passage and a second buffer area adjacent to a fuel gas flow field. The opening dimension of the first buffer area in a stacking direction is larger than the opening dimension of the second buffer area in the stacking direction.
    Type: Application
    Filed: June 13, 2012
    Publication date: December 20, 2012
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Shuhei GOTO, Narutoshi SUGITA, Kentaro ISHIDA, Tetsuya NAKAMURA
  • Publication number: 20120295177
    Abstract: A cell unit of a fuel cell includes a first membrane electrode assembly, a first metal separator, a second membrane electrode assembly, and a second metal separator. Resin frame members are provided at the outer ends of the first and second membrane electrode assemblies. Coolant connection channels including a plurality of grooves is formed in each of the resin frame members. The grooves of the coolant connection channels of the cell unit and grooves of coolant connection channels of a cell unit that is adjacent to the cell unit in the stacking direction are offset from each other, and are not overlapped with each other in the stacking direction.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 22, 2012
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Kentaro ISHIDA, Shuhei GOTO, Narutoshi SUGITA, Tetsuya NAKAMURA
  • Publication number: 20120295176
    Abstract: A cell unit of a fuel cell includes a first membrane electrode assembly, a first metal separator, a second membrane electrode assembly, and a second metal separator. Resin frame members are provided at outer ends the first and second membrane electrode assemblies. A dual seal provided on the resin frame member includes an outer seal member and an inner seal member. A front end of the outer seal member contacts the resin frame member, and a front end of the inner seal member contacts the outer end of the first metal separator. The outer seal member and the outer seal member have the same height.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 22, 2012
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Narutoshi SUGITA, Tetsuya NAKAMURA, Daisuke OKONOGI, Keisuke ANDO, Yoshiro ICHIKAWA, Kentaro ISHIDA