Patents by Inventor Natalie A. Fassbender

Natalie A. Fassbender has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220126279
    Abstract: Methods and corresponding catalysts are provided for conversion of an aromatic feed containing C8+ aromatics (particularly C9+ aromatics) to form a converted product mixture comprising, e.g., benzene and/or xylenes. The aromatic feed can be converted in the presence of a catalyst that includes a silica binder, a mixture of a first zeolite having an MEL framework (such as ZSM-11 and/or an MFI framework (such as ZSM-5), and a second zeolite having an MOR framework, such as mordenite, particularly a mordenite synthesized using TEA or MTEA as a structure directing agent, and a metal. The catalyst can further include one or more metals supported on the catalyst.
    Type: Application
    Filed: March 26, 2020
    Publication date: April 28, 2022
    Inventors: Joseph E. Gatt, Maryam Peer, Natalie A. Fassbender, William J. Knaeble, Jocelyn A. Gilcrest, Wenyih F. Lai, Paul Podsiadlo, Thomas J. Ferro, Doron Levin, Benjamin C. Gamoke
  • Patent number: 10518248
    Abstract: A method of producing a hydrogenation catalyst, for example, a phthalate hydrogenation catalyst, comprising contacting a silica support having a medium pore size of at least about 10 nm with an acid to produce a treated silica support, and depositing a noble metal, preferably ruthenium, on the treated silica support to produce a noble metal-containing silica support, and optionally contacting the noble metal-containing silica support with a chelating agent to form the hydrogenation catalyst; a hydrogenation catalyst prepared by that method; and a method of hydrogenating unsaturated hydrocarbons, such as, phthalates, in which an unsaturated hydrocarbon is contacted with hydrogen gas in the presence of the hydrogenation catalyst of the invention.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: December 31, 2019
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Chuansheng Bai, Hans K. T. Goris, Adrienne J. Thornburg, Natalie A. Fassbender, Jean W. Beeckman, Sabato Miseo, Stuart L. Soled
  • Patent number: 10307751
    Abstract: Disclosed herein are an apparatus and a method for mixing and/or mulling a sample, the apparatus comprising at least one container made of a flexible material and containing a sample, means for holding the container, and means for impacting the container, wherein the means for holding and the means for impacting are movable relative to each other, and wherein the means for holding, the means for impacting, and the container are arranged such that the means for impacting and the container can repeatedly collide, whereby an energy of collision can be imparted to the sample, thereby mixing and/or mulling the sample. Also disclosed is an assembly for performing high throughput experiments including the apparatus for mixing and/or mulling a sample and an extruder configured to receive a sample weighing less than 100 grams.
    Type: Grant
    Filed: February 2, 2016
    Date of Patent: June 4, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Jean W. Beeckman, Natalie A. Fassbender, Theodore E. Datz, Chuansheng Bai, Adrienne J. Thornburg, Tilman W. Beutel
  • Patent number: 10130938
    Abstract: A method of producing a hydrogenation catalyst, for example, a phthalate hydrogenation catalyst, comprising contacting a silica support having a medium pore size of at least about 10 nm with an acid to produce a treated silica support, and depositing a noble metal, preferably ruthenium, on the treated silica support to produce a noble metal-containing silica support, and optionally contacting the noble metal-containing silica support with a chelating agent to form the hydrogenation catalyst; a hydrogenation catalyst prepared by that method; and a method of hydrogenating unsaturated hydrocarbons, such as, phthalates, in which an unsaturated hydrocarbon is contacted with hydrogen gas in the presence of the hydrogenation catalyst of the invention.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: November 20, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Chuansheng Bai, Jean W. Beeckman, Hans K. T. Goris, Adrienne J. Thornburg, Natalie A. Fassbender, Sabato Miseo, Stuart L. Soled
  • Patent number: 10130940
    Abstract: A method of preparing a hydrogenation catalyst, for example, a phthalate hydrogenation catalyst, comprising contacting a silica support having a median pore size of at least about 10 nm with a silylating agent to form an at least partially coated silica support, calcining said coated silica support to form a treated silica support, and depositing a noble metal, preferably ruthenium, on the treated silica support, and optionally contacting the treated silica support with an optional chelating agent to form the hydrogenation catalyst; a hydrogenation catalyst prepared by that method; and a method of hydrogenating unsaturated hydrocarbons, such as phthalates, in which an unsaturated hydrocarbon is contacted with hydrogen gas in the presence of the hydrogenation catalyst of the invention.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: November 20, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Chuansheng Bai, Jean W. L. Beeckman, Adrienne J. Thornburg, Natalie A. Fassbender, Sabato Miseo, Stuart L. Soled
  • Publication number: 20180272321
    Abstract: A method of producing a hydrogenation catalyst, for example, a phthalate hydrogenation catalyst, comprising contacting a silica support having a medium pore size of at least about 10 nm with an acid to produce a treated silica support, and depositing a noble metal, preferably ruthenium, on the treated silica support to produce a noble metal-containing silica support, and optionally contacting the noble metal-containing silica support with a chelating agent to form the hydrogenation catalyst; a hydrogenation catalyst prepared by that method; and a method of hydrogenating unsaturated hydrocarbons, such as, phthalates, in which an unsaturated hydrocarbon is contacted with hydrogen gas in the presence of the hydrogenation catalyst of the invention.
    Type: Application
    Filed: May 25, 2018
    Publication date: September 27, 2018
    Inventors: Chuansheng Bai, Hans K. T. Goris, Adrienne J. Thornburg, Natalie A. Fassbender, Jean W. Beeckman, Sabato Miseo, Stuart L. Soled
  • Publication number: 20180185824
    Abstract: A method of preparing a hydrogenation catalyst, for example, a phthalate hydrogenation catalyst, comprising contacting a silica support having a median pore size of at least about 10 nm with a silylating agent to form an at least partially coated silica support, calcining said coated silica support to form a treated silica support, and depositing a noble metal, preferably ruthenium, on the treated silica support, and optionally contacting the treated silica support with an optional chelating agent to form the hydrogenation catalyst; a hydrogenation catalyst prepared by that method; and a method of hydrogenating unsaturated hydrocarbons, such as phthalates, in which an unsaturated hydrocarbon is contacted with hydrogen gas in the presence of the hydrogenation catalyst of the invention.
    Type: Application
    Filed: March 2, 2018
    Publication date: July 5, 2018
    Inventors: Chuansheng Bai, Jean W. L. Beeckman, Adrienne J. Thornburg, Natalie A. Fassbender, Sabato Miseo, Stuart L. Soled
  • Publication number: 20180141033
    Abstract: Disclosed herein are an apparatus and a method for mixing and/or mulling a sample, the apparatus comprising at least one container made of a flexible material and containing a sample, means for holding the container, and means for impacting the container, wherein the means for holding and the means for impacting are movable relative to each other, and wherein the means for holding, the means for impacting, and the container are arranged such that the means for impacting and the container can repeatedly collide, whereby an energy of collision can be imparted to the sample, thereby mixing and/or mulling the sample. Also disclosed is an assembly for performing high throughput experiments including the apparatus for mixing and/or mulling a sample and an extruder configured to receive a sample weighing less than 100 grams.
    Type: Application
    Filed: February 2, 2016
    Publication date: May 24, 2018
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Jean W. Beeckman, Natalie A. Fassbender, Theodore E. Datz, Chuansheng Bai, Adrienne J. Thornburg, Tilman W. Beutel
  • Patent number: 9943829
    Abstract: A method of preparing a hydrogenation catalyst, for example, a phthalate hydrogenation catalyst, comprising contacting a silica support having a median pore size of at least about 10 nm with a silylating agent to form an at least partially coated silica support, calcining said coated silica support to form a treated silica support, and depositing a noble metal, preferably ruthenium, on the treated silica support, and optionally contacting the treated silica support with an optional chelating agent to form the hydrogenation catalyst; a hydrogenation catalyst prepared by that method; and a method of hydrogenating unsaturated hydrocarbons, such as phthalates, in which an unsaturated hydrocarbon is contacted with hydrogen gas in the presence of the hydrogenation catalyst of the invention.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: April 17, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Chuansheng Bai, Jean W. Beeckman, Adrienne J. Thornburg, Natalie A. Fassbender, Sabato Miseo, Stuart L. Soled
  • Patent number: 9861960
    Abstract: A method of preparing a hydrogenation catalyst, for example, a phthalate hydrogenation catalyst, comprising nebulizing a liquid containing a noble metal and a chelating agent comprising at least one nitrogen-containing functional group to form a nebulized liquid, and contacting the nebulized liquid with silica particles; a hydrogenation catalyst prepared by that method; and a method of hydrogenating unsaturated hydrocarbons, such as phthalates, in which an unsaturated hydrocarbon is contacted with hydrogen gas in the presence of the hydrogenation catalyst of the invention.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: January 9, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Chuansheng Bai, Jean W. Beeckman, Adrienne J Thornburg, Natalie A. Fassbender, Theodore E. Datz
  • Patent number: 9597655
    Abstract: A composition is described comprising a molecular sieve having pores defined by channels formed by one or more 8-membered rings of tetrahedrally coordinated atoms, such as a DDR-type molecular sieve, and an amorphous deposit of a boron compound on the molecular sieve.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: March 21, 2017
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jean W. Beeckman, Ivy D. Johnson, Natalie A. Fassbender, Tilman W. Beutel, Nadya A. Hrycenko, Randolph J. Smiley, Peter I. Ravikovitch
  • Patent number: 9573116
    Abstract: Methods are provided for synthesizing ZSM-58 crystals with an improved morphology and/or an improved size distribution. By controlling the conditions during synthesis of the ZSM-58 crystals, crystals of a useful size with a narrow size distribution can be generated. Steaming the H-form DDR framework type crystals at a temperature from 426±° C. to 1100±° C. for a time period from about 30 minutes to about 48 hours can attain one or more of the following properties: a CH4 diffusivity of no more than 95% of the CH4 diffusivity of the unsteamed H-form DDR framework type crystals; an N2 BET surface area from 85% to 110% of the surface area of unsteamed H-form DDR framework type crystals; and an equilibrium CO2 sorption capacity from 80% to 105% of the equilibrium CO2 sorption capacity of unsteamed H-form DDR framework type crystals.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: February 21, 2017
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Ivy D. Johnson, Tilman W. Beutel, Peter I. Ravikovitch, Harry W. Deckman, Jack W. Johnson, Jean W. Beeckman, Natalie A. Fassbender, Nadya A Hrycenko, Randolph J. Smiley
  • Publication number: 20160228861
    Abstract: The invention relates to moderately twisted polylobed extrudates having improved crush strength. The moderately twisted polylobed extrudates have an oblong shape and a cross section comprising a plurality of lobes, which lobes extend along and are twisted around a longitudinal axis of the extrudate and wherein the twist has a pitch from about 0.5 turns/inch (0.5 turns per 2.54 cm) to about 2 turns/inch (2 turns per 2.54 cm). Further the invention relates to a method for manufacturing such moderately twisted polylobed extrudates and their use as catalysts or adsorbents.
    Type: Application
    Filed: December 22, 2015
    Publication date: August 11, 2016
    Inventors: Wenyih F. Lai, Jean W. Beeckman, Theodore E. Datz, Natalie A. Fassbender
  • Publication number: 20160199814
    Abstract: A method of producing a hydrogenation catalyst, for example, a phthalate hydrogenation catalyst, comprising contacting a silica support having a medium pore size of at least about 10 nm with an acid to produce a treated silica support, and depositing a noble metal, preferably ruthenium, on the treated silica support to produce a noble metal-containing silica support, and optionally contacting the noble metal-containing silica support with a chelating agent to form the hydrogenation catalyst; a hydrogenation catalyst prepared by that method; and a method of hydrogenating unsaturated hydrocarbons, such as, phthalates, in which an unsaturated hydrocarbon is contacted with hydrogen gas in the presence of the hydrogenation catalyst of the invention.
    Type: Application
    Filed: September 2, 2014
    Publication date: July 14, 2016
    Inventors: Chuansheng Bai, Jean W. Beeckman, Hans K.T. Goris, Adrienne J. Thornburg, Natalie A. Fassbender, Sabato Miseo, Stuart L. Soled
  • Publication number: 20160193591
    Abstract: A method of preparing a hydrogenation catalyst, for example, a phthalate hydrogenation catalyst, comprising nebulizing a liquid containing a noble metal and a chelating agent comprising at least one nitrogen-containing functional group to form a nebulized liquid, and contacting the nebulized liquid with silica particles; a hydrogenation catalyst prepared by that method; and a method of hydrogenating unsaturated hydrocarbons, such as phthalates, in which an unsaturated hydrocarbon is contacted with hydrogen gas in the presence of the hydrogenation catalyst of the invention.
    Type: Application
    Filed: September 2, 2014
    Publication date: July 7, 2016
    Inventors: Chuansheng Bai, Jean W. Beeckman, Adrienne J Thomburg, Natalie A. Fassbender, Theodore E. Datz
  • Publication number: 20160193592
    Abstract: A method of preparing a hydrogenation catalyst, for example, a phthalate hydrogenation catalyst, comprising contacting a silica support having a median pore size of at least about 10 nm with a silylating agent to form an at least partially coated silica support, calcining said coated silica support to form a treated silica support, and depositing a noble metal, preferably ruthenium, on the treated silica support, and optionally contacting the treated silica support with an optional chelating agent to form the hydrogenation catalyst; a hydrogenation catalyst prepared by that method; and a method of hydrogenating unsaturated hydrocarbons, such as phthalates, in which an unsaturated hydrocarbon is contacted with hydrogen gas in the presence of the hydrogenation catalyst of the invention.
    Type: Application
    Filed: September 2, 2014
    Publication date: July 7, 2016
    Inventors: Chuansheng Bai, Jean W. Beeckman, Adrienne J. Thornburg, Natalie A. Fassbender, Sabato Miseo, Stuart L. Soled
  • Publication number: 20160167013
    Abstract: A composition is described comprising a molecular sieve having pores defined by channels formed by one or more 8-membered rings of tetrahedrally coordinated atoms, such as a DDR-type molecular sieve, and an amorphous deposit of a boron compound on the molecular sieve.
    Type: Application
    Filed: November 19, 2015
    Publication date: June 16, 2016
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Jean W. Beeckman, Ivy D. Johnson, Natalie A. Fassbender, Tilman W. Beutel, Nadya A. Hrycenko, Randolph J. Smiley, Peter I. Ravikovitch
  • Publication number: 20150182947
    Abstract: Methods are provided for synthesizing ZSM-58 crystals with an improved morphology and/or an improved size distribution. By controlling the conditions during synthesis of the ZSM-58 crystals, crystals of a useful size with a narrow size distribution can be generated. Additionally, by controlling the ratio of water content to silica content in the synthesis mixture, it has unexpectedly been found that ZSM-58 crystals can be formed with an improved morphology. The improved morphology can result in ZSM-58 crystals with a more uniform size across the various dimensions of the crystal, which allows for more uniform diffusion within the crystal. This is in contrast to conventionally synthesized crystals, where the size of the crystal can vary along different axes of the crystals.
    Type: Application
    Filed: December 17, 2014
    Publication date: July 2, 2015
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Ivy D. Johnson, Tilman W. Beutel, Peter I. Ravikovitch, Harry W. Deckman, Jack W. Johnson, Jean W. Beeckman, Natalie A. Fassbender, Nadya A. Hrycenko, Randy J. Smiley