Patents by Inventor Nathalie Bolduc

Nathalie Bolduc has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11884963
    Abstract: Provided are methods of depleting a target nucleic acid from an initial collection of nucleic acids. Aspects of the methods include contacting the initial collection with a nucleic acid guided nuclease specific for the target nucleic acid in a manner sufficient to deplete the target nucleic acid from the initial collection. Depending on a given application, depletion of a target nucleic acid may vary, e.g., where depleting may include cleaving a target nucleic acid in, or selectively separating a target nucleic acid from, the initial collection of nucleic acids. Also provided are compositions and kits for practicing embodiments of the methods.
    Type: Grant
    Filed: April 20, 2021
    Date of Patent: January 30, 2024
    Assignee: Takara Bio USA, Inc.
    Inventors: Andrew Alan Farmer, Craig Betts, Nathalie Bolduc
  • Publication number: 20230257735
    Abstract: Provided are methods of adding adapters to nucleic acids. The methods include combining in a reaction mixture a template ribonucleic acid (RNA), a template switch oligonucleotide including a 3? hybridization domain and a sequencing platform adapter construct, a polymerase, and dNTPs. The reaction mixture components are combined under conditions sufficient to produce a product nucleic acid that includes the template RNA and the template switch oligonucleotide each hybridized to adjacent regions of a single product nucleic acid that includes a region polymerized from the dNTPs by the polymerase. Aspects of the invention further include compositions and kits.
    Type: Application
    Filed: November 4, 2022
    Publication date: August 17, 2023
    Inventors: Craig Betts, Steve Oh, George G. Jokhadze, Nathalie Bolduc
  • Publication number: 20210238655
    Abstract: Provided are methods of depleting a target nucleic acid from an initial collection of nucleic acids. Aspects of the methods include contacting the initial collection with a nucleic acid guided nuclease specific for the target nucleic acid in a manner sufficient to deplete the target nucleic acid from the initial collection. Depending on a given application, depletion of a target nucleic acid may vary, e.g., where depleting may include cleaving a target nucleic acid in, or selectively separating a target nucleic acid from, the initial collection of nucleic acids. Also provided are compositions and kits for practicing embodiments of the methods.
    Type: Application
    Filed: April 20, 2021
    Publication date: August 5, 2021
    Inventors: Andrew Alan Farmer, Craig Betts, Nathalie Bolduc
  • Publication number: 20210222236
    Abstract: Provided are methods of producing a product nucleic acid. The methods include combining a template deoxyribonucleic acid (DNA), a polymerase, a template switch oligonucleotide, and dNTPs into a reaction mixture. The components are combined into the reaction mixture under conditions sufficient to produce a product nucleic acid that includes the template DNA and the template switch oligonucleotide each hybridized to adjacent regions of a single product nucleic acid that includes a region polymerized from the dNTPs by the polymerase. Aspects of the invention further include compositions and kits.
    Type: Application
    Filed: April 8, 2021
    Publication date: July 22, 2021
    Inventors: Craig Betts, Andrew Alan Farmer, Nathalie Bolduc
  • Publication number: 20210155922
    Abstract: Provided are methods of adding adapters to nucleic acids. The methods include combining in a reaction mixture a template ribonucleic acid (RNA), a template switch oligonucleotide including a 3? hybridization domain and a sequencing platform adapter construct, a polymerase, and dNTPs. The reaction mixture components are combined under conditions sufficient to produce a product nucleic acid that includes the template RNA and the template switch oligonucleotide each hybridized to adjacent regions of a single product nucleic acid that includes a region polymerized from the dNTPs by the polymerase. Aspects of the invention further include compositions and kits.
    Type: Application
    Filed: January 19, 2021
    Publication date: May 27, 2021
    Inventors: Craig Betts, Steve Oh, George Jokhadze, Nathalie Bolduc
  • Patent number: 11001882
    Abstract: Provided are methods of producing a product nucleic acid. The methods include combining a template deoxyribonucleic acid (DNA), a polymerase, a template switch oligonucleotide, and dNTPs into a reaction mixture. The components are combined into the reaction mixture under conditions sufficient to produce a product nucleic acid that includes the template DNA and the template switch oligonucleotide each hybridized to adjacent regions of a single product nucleic acid that includes a region polymerized from the dNTPs by the polymerase. Aspects of the invention further include compositions and kits.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: May 11, 2021
    Assignee: Takara Bio USA, Inc.
    Inventors: Craig Betts, Andrew Alan Farmer, Nathalie Bolduc
  • Patent number: 10988796
    Abstract: Provided are methods of depleting a target nucleic acid from an initial collection of nucleic acids. Aspects of the methods include contacting the initial collection with a nucleic acid guided nuclease specific for the target nucleic acid in a manner sufficient to deplete the target nucleic acid from the initial collection. Depending on a given application, depletion of a target nucleic acid may vary, e.g., where depleting may include cleaving a target nucleic acid in, or selectively separating a target nucleic acid from, the initial collection of nucleic acids. Also provided are compositions and kits for practicing embodiments of the methods.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: April 27, 2021
    Assignee: Takara Bio USA, Inc.
    Inventors: Andrew Alan Farmer, Craig Betts, Nathalie Bolduc
  • Patent number: 10954510
    Abstract: Provided are methods of adding adapters to nucleic acids. The methods include combining in a reaction mixture a template ribonucleic acid (RNA), a template switch oligonucleotide including a 3? hybridization domain and a sequencing platform adapter construct, a polymerase, and dNTPs. The reaction mixture components are combined under conditions sufficient to produce a product nucleic acid that includes the template RNA and the template switch oligonucleotide each hybridized to adjacent regions of a single product nucleic acid that includes a region polymerized from the dNTPs by the polymerase. Aspects of the invention further include compositions and kits.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: March 23, 2021
    Assignee: Takara Bio USA, Inc.
    Inventors: Craig Betts, Steve Oh, George G. Jokhadze, Nathalie Bolduc
  • Patent number: 10941397
    Abstract: Provided are methods of adding adapters to nucleic acids. The methods include combining in a reaction mixture a template ribonucleic acid (RNA), a template switch oligonucleotide including a 3? hybridization domain and a sequencing platform adapter construct, a polymerase, and dNTPs. The reaction mixture components are combined under conditions sufficient to produce a product nucleic acid that includes the template RNA and the template switch oligonucleotide each hybridized to adjacent regions of a single product nucleic acid that includes a region polymerized from the dNTPs by the polymerase. Aspects of the invention further include compositions and kits.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: March 9, 2021
    Assignee: Takara Bio USA, Inc.
    Inventors: Craig Betts, Steve Oh, George Jokhadze, Nathalie Bolduc
  • Publication number: 20210002633
    Abstract: Provided are methods of adding adapters to nucleic acids. The methods include combining in a reaction mixture a template ribonucleic acid (RNA), a template switch oligonucleotide including a 3? hybridization domain and a sequencing platform adapter construct, a polymerase, and dNTPs. The reaction mixture components are combined under conditions sufficient to produce a product nucleic acid that includes the template RNA and the template switch oligonucleotide each hybridized to adjacent regions of a single product nucleic acid that includes a region polymerized from the dNTPs by the polymerase. Aspects of the invention further include compositions and kits.
    Type: Application
    Filed: August 13, 2020
    Publication date: January 7, 2021
    Inventors: Craig Betts, Steve Oh, George G. Jokhadze, Nathalie Bolduc
  • Patent number: 10781443
    Abstract: Provided are methods of adding adapters to nucleic acids. The methods include combining in a reaction mixture a template ribonucleic acid (RNA), a template switch oligonucleotide including a 3? hybridization domain and a sequencing platform adapter construct, a polymerase, and dNTPs. The reaction mixture components are combined under conditions sufficient to produce a product nucleic acid that includes the template RNA and the template switch oligonucleotide each hybridized to adjacent regions of a single product nucleic acid that includes a region polymerized from the dNTPs by the polymerase. Aspects of the invention further include compositions and kits.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: September 22, 2020
    Assignee: Takara Bio USA, Inc.
    Inventors: Craig Betts, Steve Oh, George G. Jokhadze, Nathalie Bolduc
  • Publication number: 20190323062
    Abstract: Provided are methods for generating strand specific nucleic acids. The subject methods may include coupling an adaptor to a 3?-end of a target nucleic acid to form an adaptor-coupled target nucleic acid, which may be combined with further components in a template switching reaction to produce a product nucleic acid. The subject methods find use in a variety of applications, including but not limited to e.g., the preparation of nucleic acid libraries.
    Type: Application
    Filed: April 11, 2018
    Publication date: October 24, 2019
    Inventors: Nathalie BOLDUC, Marta GONZALEZ-HERNANDEZ, Emmanuel KAMBEROV, Brian WALSH
  • Publication number: 20190062805
    Abstract: Provided are methods of depleting a target nucleic acid from an initial collection of nucleic acids. Aspects of the methods include contacting the initial collection with a nucleic acid guided nuclease specific for the target nucleic acid in a manner sufficient to deplete the target nucleic acid from the initial collection. Depending on a given application, depletion of a target nucleic acid may vary, e.g., where depleting may include cleaving a target nucleic acid in, or selectively separating a target nucleic acid from, the initial collection of nucleic acids. Also provided are compositions and kits for practicing embodiments of the methods.
    Type: Application
    Filed: October 8, 2018
    Publication date: February 28, 2019
    Inventors: Andrew Alan Farmer, Craig Betts, Nathalie Bolduc
  • Patent number: 10150985
    Abstract: Provided are methods of depleting a target nucleic acid from an initial collection of nucleic acids. Aspects of the methods include contacting the initial collection with a nucleic acid guided nuclease specific for the target nucleic acid in a manner sufficient to deplete the target nucleic acid from the initial collection. Depending on a given application, depletion of a target nucleic acid may vary, e.g., where depleting may include cleaving a target nucleic acid in, or selectively separating a target nucleic acid from, the initial collection of nucleic acids. Also provided are compositions and kits for practicing embodiments of the methods.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: December 11, 2018
    Assignee: Takara Bio USA, Inc.
    Inventors: Andrew Alan Farmer, Craig Betts, Nathalie Bolduc
  • Publication number: 20170198284
    Abstract: Provided are methods of adding adapters to nucleic acids. The methods include combining in a reaction mixture a template ribonucleic acid (RNA), a template switch oligonucleotide including a 3? hybridization domain and a sequencing platform adapter construct, a polymerase, and dNTPs. The reaction mixture components are combined under conditions sufficient to produce a product nucleic acid that includes the template RNA and the template switch oligonucleotide each hybridized to adjacent regions of a single product nucleic acid that includes a region polymerized from the dNTPs by the polymerase. Aspects of the invention further include compositions and kits.
    Type: Application
    Filed: March 24, 2017
    Publication date: July 13, 2017
    Inventors: Craig Betts, Steve Oh, George G. Jokhadze, Nathalie Bolduc
  • Publication number: 20170198285
    Abstract: Provided are methods of adding adapters to nucleic acids. The methods include combining in a reaction mixture a template ribonucleic acid (RNA), a template switch oligonucleotide including a 3? hybridization domain and a sequencing platform adapter construct, a polymerase, and dNTPs. The reaction mixture components are combined under conditions sufficient to produce a product nucleic acid that includes the template RNA and the template switch oligonucleotide each hybridized to adjacent regions of a single product nucleic acid that includes a region polymerized from the dNTPs by the polymerase. Aspects of the invention further include compositions and kits.
    Type: Application
    Filed: March 24, 2017
    Publication date: July 13, 2017
    Inventors: Craig Betts, Steve Oh, George G. Jokhadze, Nathalie Bolduc