Patents by Inventor Nathan E. Baxter

Nathan E. Baxter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8877299
    Abstract: A method of enhancing a material layer on a substrate is described. The method comprises establishing a gas cluster ion beam (GCIB), and treating a host region of the substrate by exposing the host region of the substrate to the GCIB. The treatment with the GCIB may selectively remove an undesirable specie and/or introduce a desirable specie to the host region.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: November 4, 2014
    Assignee: TEL Epion Inc.
    Inventors: John J. Hautala, Nathan E. Baxter, Koji Yamashita
  • Patent number: 8592784
    Abstract: A method of modifying a material layer on a substrate is described. The method comprises forming the material layer on the substrate. Thereafter, the method comprises establishing a gas cluster ion beam (GCIB) having an energy per atom ratio ranging from about 0.25 eV per atom to about 100 eV per atom, and modifying the material layer by exposing the material layer to the GCIB.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: November 26, 2013
    Assignee: TEL Epion Inc.
    Inventors: John J. Hautala, Nathan E. Baxter
  • Publication number: 20110266466
    Abstract: A method of modifying a material layer on a substrate is described. The method comprises forming the material layer on the substrate. Thereafter, the method comprises establishing a gas cluster ion beam (GCIB) having an energy per atom ratio ranging from about 0.25 eV per atom to about 100 eV per atom, and modifying the material layer by exposing the material layer to the GCIB.
    Type: Application
    Filed: July 13, 2011
    Publication date: November 3, 2011
    Applicant: TEL EPION INC.
    Inventors: John J. Hautala, Nathan E. Baxter
  • Patent number: 7982196
    Abstract: A method of modifying a material layer on a substrate is described. The method comprises forming the material layer on the substrate. Thereafter, the method comprises establishing a gas cluster ion beam (GCIB) having an energy per atom ratio ranging from about 0.25 eV per atom to about 100 eV per atom, and modifying the material layer by exposing the material layer to the GCIB.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: July 19, 2011
    Assignee: TEL Epion Inc.
    Inventors: John J. Hautala, Nathan E. Baxter
  • Publication number: 20100243920
    Abstract: A method of enhancing a material layer on a substrate is described. The method comprises establishing a gas cluster ion beam (GCIB), and treating a host region of the substrate by exposing the host region of the substrate to the GCIB. The treatment with the GCIB may selectively remove an undesirable specie and/or introduce a desirable specie to the host region.
    Type: Application
    Filed: March 31, 2009
    Publication date: September 30, 2010
    Applicant: TEL Epion Inc.
    Inventors: John J. Hautala, Nathan E. Baxter, Koji Yamashita
  • Publication number: 20100243919
    Abstract: A method of modifying a material layer on a substrate is described. The method comprises forming the material layer on the substrate. Thereafter, the method comprises establishing a gas cluster ion beam (GCIB) having an energy per atom ratio ranging from about 0.25 eV per atom to about 100 eV per atom, and modifying the material layer by exposing the material layer to the GCIB.
    Type: Application
    Filed: March 31, 2009
    Publication date: September 30, 2010
    Applicant: TEL EPION INC.
    Inventors: John J. Hautala, Nathan E. Baxter
  • Patent number: 7198820
    Abstract: A process depositing a carbon- and transition metal-containing thin film on a substrate involves placing a substrate within a reaction space and sequentially pulsing into the reaction space a transition metal chemical and an organometallic chemical. Following each chemical pulse, the reaction space is purged, and the pulse and purge sequence is repeated until a desired film thickness is obtained. A preferred deposition process uses atomic layer deposition techniques and may result in an electrically conductive thin carbide film having uniform thickness over a large substrate area and excellent adhesion and step coverage properties.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: April 3, 2007
    Assignee: Planar Systems, Inc.
    Inventors: Kari Härkönen, Mark Doczy, Teemu Lang, Nathan E. Baxter
  • Publication number: 20040208994
    Abstract: A process and system for depositing a carbon- and transition metal-containing thin film on a substrate involves placing a substrate within a reaction space and sequentially pulsing into the reaction space a transition metal chemical and an organometallic chemical. Following each chemical pulse, the reaction space is purged, and the pulse and purge sequence is repeated until a desired film thickness is obtained. A preferred deposition process uses atomic layer deposition techniques and may result in an electrically conductive thin carbide film having uniform thickness over a large substrate area and excellent adhesion and step coverage properties.
    Type: Application
    Filed: August 15, 2003
    Publication date: October 21, 2004
    Applicant: Planar Systems, Inc.
    Inventors: Kari Harkonen, Mark Doczy, Teemu Lang, Nathan E. Baxter