Patents by Inventor Nathan Kundtz

Nathan Kundtz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10062968
    Abstract: Surface scattering antennas provide adjustable radiation fields by adjustably coupling scattering elements along a wave-propagating structure. In some approaches, the scattering elements are complementary metamaterial elements. In some approaches, the scattering elements are made adjustable by disposing an electrically adjustable material, such as a liquid crystal, in proximity to the scattering elements. Methods and systems provide control and adjustment of surface scattering antennas for various applications.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: August 28, 2018
    Inventors: Adam Bily, Anna K. Boardman, Russell J. Hannigan, John Desmond Hunt, Nathan Kundtz, David R. Nash, Ryan Allan Stevenson, Philip A. Sullivan
  • Publication number: 20180166780
    Abstract: An apparatus is disclosed herein for a cylindrically fed antenna and method for using the same. In one embodiment, the antenna comprises an antenna feed to input a cylindrical feed wave and a tunable slotted array coupled to the antenna feed.
    Type: Application
    Filed: December 19, 2017
    Publication date: June 14, 2018
    Inventors: Adam Bily, Nathan Kundtz, Mikala Johnson
  • Publication number: 20180152235
    Abstract: Methods and system using an agile hub and smart connectivity broker for satellite communications are disclosed. In one example, a hub for satellite communications includes an interface to facilitate satellite communications between a terminal and satellites across LEO, MEO, and GEO constellations servicing a geographic region, and one or more processors coupled to the interface. The terminal includes one or more antennas, each antenna having an aperture with a receive portion to receive radio frequency (RF) signals and a transmit portion to transmit RF signals. The one or more processors are configured to implement a broker for the hub. The broker is to plan and facilitate RF links between the terminal and satellites in the constellation based on one more characteristics for satellite communications. The terminal can be a ground-based terminal or a mobile-based terminal on a vehicle, aircraft, marine vessel, or movable machine or object.
    Type: Application
    Filed: October 31, 2017
    Publication date: May 31, 2018
    Inventors: Maxwell A. Smoot, Ryan Stevenson, William D. Marks, Alexander L. Bautista, JR., Nathan Kundtz
  • Publication number: 20180131103
    Abstract: An antenna apparatus and method for use of the same are disclosed herein. In one embodiment, the antenna comprises a single physical antenna aperture having at least two spatially interleaved antenna arrays of antenna elements, the antenna arrays being operable independently and simultaneously at distinct frequency bands.
    Type: Application
    Filed: December 19, 2017
    Publication date: May 10, 2018
    Inventors: Adam Bily, Mohsen Sazegar, Nathan Kundtz, Ryan Stevenson
  • Publication number: 20180115063
    Abstract: A method and apparatus for aperture segmentation are disclosed. In one embodiment, the antenna comprises an antenna feed to input a cylindrical feed wave and a physical antenna aperture coupled to the antenna feed and comprising a plurality of segments having antenna elements that form a plurality of closed concentric rings of antenna elements when combined, where the plurality of concentric rings are concentric with respect to the antenna feed.
    Type: Application
    Filed: December 14, 2017
    Publication date: April 26, 2018
    Inventors: Mohsen Sazegar, Nathan Kundtz, Steve Linn
  • Publication number: 20180108987
    Abstract: A method and apparatus is disclosed herein for antenna element placement are disclosed. In one embodiment, an antenna comprises an antenna feed to input a cylindrical feed wave; a single physical antenna aperture having at least one antenna array of antenna elements, where the antenna elements are located on a plurality of concentric rings concentrically located relative to an antenna feed, wherein rings of the plurality of concentric rings are separated by a ring-to-ring distance, wherein a first distance between elements along rings of the plurality of concentric rings is a function of a second distance between rings of the plurality of concentric rings; and a controller to control each antenna element of the array separately using matrix drive circuitry, where each of the antenna elements is uniquely addressed by the matrix drive circuitry.
    Type: Application
    Filed: December 19, 2017
    Publication date: April 19, 2018
    Inventors: Mohsen Sazegar, Nathan Kundtz
  • Publication number: 20180077711
    Abstract: An automatically adjustable radiofrequency link system includes a radiofrequency transmitter configured to transmit a signal at a frequency of transmission within an extremely high frequency (EHF) band. The system further includes a receiving device configured to receive the transmitted signal and provide feedback to a processing circuit communicatively coupled to the transmitter and the receiving device, wherein the feedback is related to the received signal. The processing circuit is configured to determine required signal properties based on the feedback and determine signal loss properties including an effect of atmospheric absorption, as a function of frequency; determine a modification to the transmitted signal using the signal loss properties and the required signal properties; and adjust the frequency of transmission to obtain a desired transmission signal using the modification.
    Type: Application
    Filed: November 20, 2017
    Publication date: March 15, 2018
    Applicant: Elwha LLC
    Inventors: Jeffrey A. Bowers, Alistair K. Chan, Russell J. Hannigan, Roderick A. Hyde, Jordin T. Kare, Nathan Kundtz, Nathan P. Myhrvold, John Brian Pendry, David R. Smith, Clarence T. Tegreene, David B. Tuckerman, Charles Whitmer, Lowell L. Wood,, JR.
  • Publication number: 20180076521
    Abstract: A method and apparatus for impedance matching for an antenna aperture are described. In one embodiment, the antenna comprises an antenna aperture having at least one array of antenna elements operable to radiate radio frequency (RF) energy and an integrated composite stack structure coupled to the antenna aperture. The integrated composite stack structure includes a wide angle impedance matching network to provide impedance matching between the antenna aperture and free space and also puts dipole loading on antenna elements.
    Type: Application
    Filed: September 11, 2017
    Publication date: March 15, 2018
    Inventors: Aidin Mehdipour, Mohsen Sazegar, Anthony Guenterberg, Robert Thomas Hower, Chris Eylander, Varada Rajan Komanduri, Ryan Stevenson, Nathan Kundtz
  • Patent number: 9905921
    Abstract: A method and apparatus is disclosed herein for antenna element placement are disclosed. In one embodiment, an antenna comprises an antenna feed to input a cylindrical feed wave; a single physical antenna aperture having at least one antenna array of antenna elements, where the antenna elements are located on a plurality of concentric rings concentrically located relative to an antenna feed, wherein rings of the plurality of concentric rings are separated by a ring-to-ring distance, wherein a first distance between elements along rings of the plurality of concentric rings is a function of a second distance between rings of the plurality of concentric rings; and a controller to control each antenna element of the array separately using matrix drive circuitry, where each of the antenna elements is uniquely addressed by the matrix drive circuitry.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: February 27, 2018
    Assignee: KYMETA CORPORATION
    Inventors: Mohsen Sazegar, Nathan Kundtz
  • Patent number: 9893435
    Abstract: An antenna apparatus and method for use of the same are disclosed herein. In one embodiment, the antenna comprises a single physical antenna aperture having at least two spatially interleaved antenna arrays of antenna elements, the antenna arrays being operable independently and simultaneously at distinct frequency bands.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: February 13, 2018
    Assignee: KYMETA CORPORATION
    Inventors: Adam Bily, Mohsen Sazegar, Nathan Kundtz, Ryan Stevenson
  • Patent number: 9887455
    Abstract: A method and apparatus for aperture segmentation are disclosed. In one embodiment, the antenna comprises an antenna feed to input a cylindrical feed wave and a physical antenna aperture coupled to the antenna feed and comprising a plurality of segments having antenna elements that form a plurality of closed concentric rings of antenna elements when combined, where the plurality of concentric rings are concentric with respect to the antenna feed.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: February 6, 2018
    Assignee: KYMETA CORPORATION
    Inventors: Mohsen Sazegar, Nathan Kundtz, Steve Linn
  • Patent number: 9887456
    Abstract: An apparatus is disclosed herein for a cylindrically fed antenna and method for using the same. In one embodiment, the antenna comprises an antenna feed to input a cylindrical feed wave and a tunable slotted array coupled to the antenna feed.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: February 6, 2018
    Assignee: KYMETA CORPORATION
    Inventors: Adam Bily, Nathan Kundtz, Mikala Johnson
  • Patent number: 9826534
    Abstract: An automatically adjustable radiofrequency link system includes a radiofrequency transmitter configured to transmit a signal at a frequency of transmission within an extremely high frequency (EHF) band. The system further includes a receiving device configured to receive the transmitted signal and provide feedback to a processing circuit communicatively coupled to the transmitter and the receiving device, wherein the feedback is related to the received signal. The processing circuit is configured to determine required signal properties based on the feedback and determine signal loss properties including an effect of atmospheric absorption, as a function of frequency; determine a modification to the transmitted signal using the signal loss properties and the required signal properties; and adjust the frequency of transmission to obtain a desired transmission signal using the modification.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: November 21, 2017
    Assignee: Elwha LLC
    Inventors: Jeffrey A. Bowers, Alistair K. Chan, Russell J. Hannigan, Roderick A. Hyde, Jordin T. Kare, Nathan Kundtz, Nathan P. Myhrvold, John Brian Pendry, David R. Smith, Clarence T. Tegreene, David B. Tuckerman, Charles Whitmer, Lowell L. Wood, Jr.
  • Publication number: 20170324148
    Abstract: A holographic antenna integrated with photovoltaic cells and method for use of the same are described. In one embodiment, the method for using an antenna comprises receiving position data indicative of an antenna aperture of an antenna after the antenna has been placed in a position to increase capture of solar energy by one or more photovoltaic (PV) structures integrated into a surface of the antenna aperture; and in response to the position data, electronically steering an array of antenna elements of the antenna to redirect a beam toward a satellite based on the position of the antenna while maintaining the position of the antenna for increased capture of the solar energy.
    Type: Application
    Filed: May 2, 2017
    Publication date: November 9, 2017
    Inventors: Ryan Stevenson, Nathan Kundtz, Steven Linn, Bob Morey, Tung Pham
  • Publication number: 20170302049
    Abstract: A method of pumping an optical resonator includes directing light generated by a pumping light at the optical resonator, exciting a propagating surface state of the optical resonator at an interface of the optical resonator, and changing a propagating frequency of the light proximate the interface, where the changed frequency corresponds to a propagation frequency of the surface state. The optical resonator includes a photonic crystal and a material, where the interface is formed between the photonic crystal and the material.
    Type: Application
    Filed: June 30, 2017
    Publication date: October 19, 2017
    Applicant: Elwha LLC
    Inventors: Jeffrey A. Bowers, William D. Duncan, Roderick A. Hyde, Jordin T. Kare, Nathan Kundtz, Ruopeng Liu, Bruce M. McWilliams, John B. Pendry, Daniel A. Roberts, David Schurig, David R. Smith, Clarence T. Tegreene, Lowell L. Wood,, JR.
  • Publication number: 20170302004
    Abstract: An antenna having radio-frequency (RF) resonators and methods for fabricating the same are described. In one embodiment, the antenna comprises a physical antenna aperture having an array of antenna elements, where the array of antenna elements includes a plurality of radio-frequency (RF) resonators, with each RF resonator of the plurality of RF resonators having an RF radiating element with a microelectromchanical systems (MEMS) device.
    Type: Application
    Filed: April 11, 2017
    Publication date: October 19, 2017
    Inventors: Ryan Stevenson, Kianoush Naeli, Mohsen Sazegar, Benjamin Sikes, Timothy Mason, Erik Shipton, Nathan Kundtz
  • Publication number: 20170301475
    Abstract: An antenna having radio-frequency (RF) resonators with tunable capacitors. In one embodiment, the tunable capacitor for tuning an RF resonator comprises: a first substrate with a first electrode attached thereto; a second substrate with a second electrode attached thereto; and a membrane between the first and second electrodes, the membrane being movable between the first and second electrodes in order to change capacitance.
    Type: Application
    Filed: April 11, 2017
    Publication date: October 19, 2017
    Inventors: Ryan Stevenson, Kianoush Naeli, Mohsen Sazegar, Benjamin Sikes, Timothy Mason, Erik Shipton, Nathan Kundtz
  • Patent number: 9776632
    Abstract: An adaptive sensing system is configured to acquire sensor data pertaining to objects in the vicinity of a land vehicle. The adaptive sensing system may be configured to identify objects that are at least partially obscured by other objects and, in response, the adaptive sensing system may be configured to modify the configuration of one or more sensors to obtain additional information pertaining to the obscured objects. The adaptive sensing system may comprise and/or be communicatively coupled to a collision detection module, which may use the sensor data acquired by the adaptive sensing system to detect potential collisions.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: October 3, 2017
    Assignee: ELWHA LLC
    Inventors: Jeffrey A. Bowers, Geoffrey F. Deane, Russell J. Hannigan, Roderick A. Hyde, Muriel Y. Ishikawa, Nathan Kundtz, Nathan P. Myhrvold, David R. Smith, Philip A. Sullivan, Clarence T. Tegreene, David B. Tuckerman, Lowell L. Wood, Jr.
  • Patent number: 9780451
    Abstract: Techniques and mechanisms for providing a tunable RF resonator device. In an embodiment, a patterned layer of an adhesive material is disposed on a side of a panel comprising a substrate and a metal layer. A membrane is aligned between the panel and another panel. A laminate is formed with the first panel, the second panel and the membrane, where an intermediate layer of the laminate includes a first portion comprising a liquid crystal channel, and a second portion comprising adhesive material disposed in interstices of the membrane. In another embodiment, the second portion forms at least part of a boundary to the liquid crystal channel.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: October 3, 2017
    Assignee: KYMETA CORPORATION
    Inventors: Ryan A. Stevenson, Chris Lorkowski, Nathan Kundtz, Witold Teller
  • Publication number: 20170236423
    Abstract: A vehicle collision detection system may be configured to coordinate with collision detection systems of other vehicles. The coordination may comprise sharing sensor data with other vehicles, receiving sensor information from other vehicles, using sensor information to generate a collision detection model, sharing the collision detection model with other vehicles, receiving a collision detection model from other vehicles, and the like. In some embodiments, vehicles may coordinate sensor operation to form a bistatic and/or multistatic sensor configuration, in which a detection signal generated at a first land vehicle is detected at a sensing system at a second land vehicle.
    Type: Application
    Filed: January 30, 2017
    Publication date: August 17, 2017
    Inventors: Jeffrey A. Bowers, Geoffrey F. Deane, Roderick A. Hyde, Nathan Kundtz, Nathan P. Myhrvold, David R. Smith, Clarence T. Tegreene, Lowell L. Wood, JR.