Patents by Inventor Nathan Wan

Nathan Wan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11847532
    Abstract: Systems and methods that analyze blood-based cancer diagnostic tests using multiple classes of molecules are described. The system uses machine learning (ML) to analyze multiple analytes, for example cell-free DNA, cell-free microRNA, and circulating proteins, from a biological sample. The system can use multiple assays, e.g., whole-genome sequencing, whole-genome bisulfite sequencing or EM-seq, small-RNA sequencing, and quantitative immunoassay. This can increase the sensitivity and specificity of diagnostics by exploiting independent information between signals. During operation, the system receives a biological sample, and separates a plurality of molecule classes from the sample. For a plurality of assays, the system identifies feature sets to input to a machine learning model. The system performs an assay on each molecule class and forms a feature vector from the measured values.
    Type: Grant
    Filed: February 11, 2021
    Date of Patent: December 19, 2023
    Assignee: Freenome Holdings, Inc.
    Inventors: Adam Drake, Daniel Delubac, Katherine Niehaus, Eric Ariazi, Imran Haque, Tzu-Yu Liu, Nathan Wan, Ajay Kannan, Brandon White
  • Patent number: 11681953
    Abstract: Systems and methods that analyze blood-based cancer diagnostic tests using multiple classes of molecules are described. The system uses machine learning (ML) to analyze multiple analytes, for example cell-free DNA, cell-free microRNA, and circulating proteins, from a biological sample. The system can use multiple assays, e.g., whole-genome sequencing, whole-genome bisulfite sequencing or EM-seq, small-RNA sequencing, and quantitative immunoassay. This can increase the sensitivity and specificity of diagnostics by exploiting independent information between signals. During operation, the system receives a biological sample, and separates a plurality of molecule classes from the sample. For a plurality of assays, the system identifies feature sets to input to a machine learning model. The system performs an assay on each molecule class and forms a feature vector from the measured values.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: June 20, 2023
    Assignee: Freenome Holdings, Inc.
    Inventors: Adam Drake, Daniel Delubac, Katherine Niehaus, Eric Ariazi, Imran Haque, Tzu-Yu Liu, Nathan Wan, Ajay Kannan, Brandon White
  • Publication number: 20210210205
    Abstract: Systems and methods that analyze blood-based cancer diagnostic tests using multiple classes of molecules are described. The system uses machine learning (ML) to analyze multiple analytes, for example cell-free DNA, cell-free microRNA, and circulating proteins, from a biological sample. The system can use multiple assays, e.g., whole-genome sequencing, whole-genome bisulfite sequencing or EM-seq, small-RNA sequencing, and quantitative immunoassay. This can increase the sensitivity and specificity of diagnostics by exploiting independent information between signals. During operation, the system receives a biological sample, and separates a plurality of molecule classes from the sample. For a plurality of assays, the system identifies feature sets to input to a machine learning model. The system performs an assay on each molecule class and forms a feature vector from the measured values.
    Type: Application
    Filed: February 11, 2021
    Publication date: July 8, 2021
    Inventors: Adam Drake, Daniel Delubac, Katherine Niehaus, Eric Ariazi, Imran Haque, Tzu-Yu Liu, Nathan Wan, Ajay Kannan, Brandon White
  • Publication number: 20210174958
    Abstract: Systems and methods that analyze blood-based cancer diagnostic tests using multiple classes of molecules are described. The system uses machine learning (ML) to analyze multiple analytes, for example cell-free DNA, cell-free microRNA, and circulating proteins, from a biological sample. The system can use multiple assays, e.g., whole-genome sequencing, whole-genome bisulfite sequencing or EM-seq, small-RNA sequencing, and quantitative immunoassay. This can increase the sensitivity and specificity of diagnostics by exploiting independent information between signals. During operation, the system receives a biological sample, and separates a plurality of molecule classes from the sample. For a plurality of assays, the system identifies feature sets to input to a machine learning model. The system performs an assay on each molecule class and forms a feature vector from the measured values.
    Type: Application
    Filed: April 15, 2019
    Publication date: June 10, 2021
    Inventors: Adam Drake, Daniel Delubac, Katherine Niehaus, Eric Ariazi, Imran Haque, Tzu-Yu Liu, Nathan Wan, Ajay Kannan, Brandon White