Patents by Inventor Ndanka O. Mukuti

Ndanka O. Mukuti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11956883
    Abstract: A method and apparatus for controlling RF plasma attributes is disclosed. Some embodiments of the disclosure provide RF sensors within processing chambers operable at high temperatures. Some embodiments provide methods of measuring RF plasma attributes using RF sensors within a processing chamber to provide feedback control for an RF generator.
    Type: Grant
    Filed: December 23, 2022
    Date of Patent: April 9, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Zheng John Ye, Daemian Raj Benjamin Raj, Shailendra Srivastava, Nikhil Sudhindrarao Jorapur, Ndanka O. Mukuti, Dmitry A. Dzilno, Juan Carlos Rocha
  • Publication number: 20230131809
    Abstract: A method and apparatus for controlling RF plasma attributes is disclosed. Some embodiments of the disclosure provide RF sensors within processing chambers operable at high temperatures. Some embodiments provide methods of measuring RF plasma attributes using RF sensors within a processing chamber to provide feedback control for an RF generator.
    Type: Application
    Filed: December 23, 2022
    Publication date: April 27, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Zheng John Ye, Daemian Raj Benjamin Raj, Shailendra Srivastava, Nikhil Sudhindrarao Jorapur, Ndanka O. Mukuti, Dmitry A. Dzilno, Juan Carlos Rocha
  • Patent number: 11570879
    Abstract: A method and apparatus for controlling RF plasma attributes is disclosed. Some embodiments of the disclosure provide RF sensors within processing chambers operable at high temperatures. Some embodiments provide methods of measuring RF plasma attributes using RF sensors within a processing chamber to provide feedback control for an RF generator.
    Type: Grant
    Filed: August 19, 2020
    Date of Patent: January 31, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Zheng John Ye, Daemian Raj Benjamin Raj, Shailendra Srivastava, Nikhil Sudhindrarao Jorapur, Ndanka O. Mukuti, Dmitry A. Dzilno, Juan Carlos Rocha
  • Publication number: 20210059037
    Abstract: A method and apparatus for controlling RF plasma attributes is disclosed. Some embodiments of the disclosure provide RF sensors within processing chambers operable at high temperatures. Some embodiments provide methods of measuring RF plasma attributes using RF sensors within a processing chamber to provide feedback control for an RF generator.
    Type: Application
    Filed: August 19, 2020
    Publication date: February 25, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Zheng John Ye, Daemian Raj Benjamin Raj, Shailendra Srivastava, Nikhil Sudhindrarao Jorapur, Ndanka O. Mukuti, Dmitry A. Dzilno, Juan Carlos Rocha
  • Patent number: 10276353
    Abstract: A method and apparatus for a dual-channel showerhead is provided. In one embodiment the showerhead comprises a body comprising a conductive material having a plurality of first openings formed therethrough comprising a first gas channel and a plurality of second openings formed therethrough comprising a second gas channel that is fluidly separated from the first gas channel, wherein each of the first openings having a geometry that is different than each of the second openings.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: April 30, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kaushik Alayavalli, Xinhai Han, Praket P. Jha, Masaki Ogata, Zhijun Jiang, Allen Ko, Ndanka O. Mukuti, Thuy Britcher, Amit Kumar Bansal, Ganesh Balasubramanian, Juan Carlos Rocha-Alvarez, Bok Hoen Kim
  • Publication number: 20160322200
    Abstract: A method and apparatus for a dual-channel showerhead is provided. In one embodiment the showerhead comprises a body comprising a conductive material having a plurality of first openings formed therethrough comprising a first gas channel and a plurality of second openings formed therethrough comprising a second gas channel that is fluidly separated from the first gas channel, wherein each of the first openings having a geometry that is different than each of the second openings.
    Type: Application
    Filed: April 29, 2016
    Publication date: November 3, 2016
    Inventors: Kaushik ALAYAVALLI, Xinhai HAN, Praket P. JHA, Masaki OGATA, Zhijun JIANG, Allen KO, Ndanka O. MUKUTI, Thuy BRITCHER, Amit Kumar BANSAL, Ganesh BALASUBRAMANIAN, Juan Carlos ROCHA-ALVAREZ, Bok Hoen KIM
  • Patent number: 7589336
    Abstract: Embodiments of the invention relate generally to an ultraviolet (UV) cure chamber for curing a dielectric material disposed on a substrate and to methods of curing dielectric materials using UV radiation. A substrate processing tool according to one embodiment comprises a body defining a substrate processing region; a substrate support adapted to support a substrate within the substrate processing region; an ultraviolet radiation lamp spaced apart from the substrate support, the lamp configured to transmit ultraviolet radiation to a substrate positioned on the substrate support; and a motor operatively coupled to rotate at least one of the ultraviolet radiation lamp or substrate support at least 180 degrees relative to each other.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: September 15, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Andrzei Kaszuba, Juan Carlos Rocha-Alvarez, Thomas Nowak, Sanjeev Baluja, Ndanka O. Mukuti
  • Patent number: 7554103
    Abstract: A pump liner is used to direct a laminar flow of purge gas across a workpiece to remove contaminants or species outgassed or otherwise produced by the workpiece during processing. The pump liner can take the form of a ring having a plurality of injection ports, such as slits of a variety of shapes and/or sizes, opposite a plurality of receiving ports in order to provide the laminar flow. The flow of purge gas is sufficient to carry a contaminant or outgassed species from the processing chamber in order to prevent the collection of the contaminants on components of the chamber. The pump liner can be heated, via conduction and irradiation from a radiation source, for example, in order to prevent the condensation of species on the liner. The pump liner also can be anodized or otherwise processed in order to increase the emissivity of the liner.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: June 30, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Juan Carlos Rocha-Alvarez, Thomas Nowak, Sanjeev Baluja, Andrzej Kaszuba, Ndanka O. Mukuti
  • Publication number: 20070298362
    Abstract: A pump liner is used to direct a laminar flow of purge gas across a workpiece to remove contaminants or species outgassed or otherwise produced by the workpiece during processing. The pump liner can take the form of a ring having a plurality of injection ports, such as slits of a variety of shapes and/or sizes, opposite a plurality of receiving ports in order to provide the laminar flow. The flow of purge gas is sufficient to carry a contaminant or outgassed species from the processing chamber in order to prevent the collection of the contaminants on components of the chamber. The pump liner can be heated, via conduction and irradiation from a radiation source, for example, in order to prevent the condensation of species on the liner. The pump liner also can be anodized or otherwise processed in order to increase the emissivity of the liner.
    Type: Application
    Filed: November 21, 2006
    Publication date: December 27, 2007
    Applicant: Applied Materials, Inc.
    Inventors: Juan Carlos Rocha-Alvarez, Thomas Nowak, Sanjeev Baluja, Andrzej Kaszuba, Ndanka O. Mukuti
  • Publication number: 20070295012
    Abstract: A re-circulating cooling system can be used with a curing system in order to reduce the exhaust requirements for the system. Further, using a cooling fluid such as nitrogen reduces the production of ozone and the sealing requirements for the system. A simple heat exchanger can be used between return and supply reservoirs in order to remove heat added to the re-circulating fluid during circulation past the curing radiation source. The nitrogen can come from a nitrogen source, or from a membrane or other device operable to split feed gas into its molecular components to provide a source of gas rich in nitrogen. An ozone destruction unit can be used with such a cooling system to reduce the amount of ozone to acceptable levels, and to minimize consumption of the nitrogen. A catalyst can be used to deplete the ozone that does not get consumed during the reaction.
    Type: Application
    Filed: November 3, 2006
    Publication date: December 27, 2007
    Applicant: Applied Materials, Inc.
    Inventors: Dustin W. Ho, Juan Carlos Rocha-Alvarez, Dale R. Du Bois, Scott A. Hendrickson, Sanjeev Baluja, Ndanka O. Mukuti
  • Publication number: 20070298167
    Abstract: A re-circulating cooling system can be used with a curing system in order to reduce the exhaust requirements for the system. Further, using a cooling fluid such as nitrogen reduces the production of ozone and the sealing requirements for the system. A simple heat exchanger can be used between return and supply reservoirs in order to remove heat added to the re-circulating fluid during circulation past the curing radiation source. The nitrogen can come from a nitrogen source, or from a membrane or other device operable to split feed gas into its molecular components to provide a source of gas rich in nitrogen. An ozone destruction unit can be used with such a cooling system to reduce the amount of ozone to acceptable levels, and to minimize consumption of the nitrogen. A catalyst can be used to deplete the ozone that does not get consumed during the reaction.
    Type: Application
    Filed: November 6, 2006
    Publication date: December 27, 2007
    Applicant: Applied Materials, Inc.
    Inventors: DUSTIN W. HO, Juan Carlos Rocha-Alvarez, Dale R. Du Bois, Scott A. Hendrickson, Sanjeev Baluja, Ndanka O. Mukuti
  • Patent number: 7074298
    Abstract: The present invention is directed to the design of a plasma CVD chamber which provides more uniform conditions for forming thin CVD films on a substrate. In one embodiment, an apparatus for processing semiconductor substrates comprises a chamber defining a plasma processing region therein. The chamber includes a bottom, a side wall, and a dome disposed on top of the side wall. The dome has a dome top and having a side portion defining a chamber diameter. A top RF coil is disposed above the dome top. A side RF coil is disposed adjacent the side portion of the dome. The side RF coil is spaced from the top RF coil by a coil separation. A ratio of the coil separation to the chamber diameter is at least about 0.15, more desirably about 0.2–0.25.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: July 11, 2006
    Assignee: Applied Materials
    Inventors: Sudhir Gondhalekar, Tom K. Cho, Rolf Guenther, Shigeru Takehiro, Masayoshi Nohira, Tetsuya Ishikawa, Ndanka O. Mukuti
  • Publication number: 20030213562
    Abstract: The present invention is directed to the design of a plasma CVD chamber which provides more uniform conditions for forming thin CVD films on a substrate. Embodiments of the invention improve temperature control of the upper chamber and improve particle performance by reducing or minimizing the temperature fluctuations on the dome between the deposition and non-deposition cycles. This allows higher source power plasma to be generated and facilitates gapfill for extremely small geometries. The dome design improves the uniformity of the plasma distribution over the substrate to be processed. In accordance with an aspect of the present invention, an apparatus for processing semiconductor substrates comprises a chamber defining a plasma processing region therein. The chamber includes a bottom, a side wall, and a dome disposed on top of the side wall. The dome has a dome top and having a side portion defining a chamber diameter. A top RF coil is disposed above the dome top.
    Type: Application
    Filed: May 17, 2002
    Publication date: November 20, 2003
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Sudhir Gondhalekar, Tom K. Cho, Rolf Guenther, Shigeru Takehiro, Masayoshi Nohira, Tetsuya Ishikawa, Ndanka O. Mukuti