Patents by Inventor Neal Brock

Neal Brock has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11353316
    Abstract: A pixelated color mask is combined with a pixelated polarization mask in dynamic interferometry. The color mask includes a wavelength-selective bandpass filter placed in front of each camera pixel such that each set of contiguous four camera pixels is covered by two green bandpass filters, a red bandpass filter, and a blue bandpass filter. The pixelated phase mask is coupled to the color filters such that one polarization filter covers one set of color filters. At least three polarization filters are used to calculate phase. In addition, the color signals can be used, for example, to encode the motion of the interferometer, to provide very high speed autofocus or tip/tilt feedback, to create a color image of the object being measured, to automatically focus the system at different positions for different measurements conducted with different color sources, and to perform heterodyne interferometry with a single, vibration-immune measurement.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: June 7, 2022
    Assignee: Onto Innovation Inc.
    Inventors: Neal Brock, James Millerd, Erik Novak, Brad Kimbrough
  • Patent number: 9958251
    Abstract: A cycloidal diffraction waveplate is combined with a pixelated phase mask (PPM) sensor in a dynamic fringe-projection interferometer to obtain phase-shifted interferograms in a single snap-shot camera operation that provides the phase information required to measure test surfaces with micrometer precision. Such mode of operation enables a portable embodiment for use in environments subject to vibration. A shifting mechanism coupled to the cycloidal waveplate allows temporal out-of-phase measurements used to remove noise due to test-surface characteristics. Two or more pixels of each unit cell of the PPM are combined to create super-pixels where the sum of the phases of the pixels is a multiple of 180 degrees, so that fringes are eliminated to facilitate operator focusing. By assigning colors or cross-hatch patterns to different ranges of modulation measured at the detector, the areas of best focus within the field of view are identified quantitatively to ensure measurements under best-focus conditions.
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: May 1, 2018
    Assignee: AD TECHNOLOGY CORPORATION
    Inventors: Neal Brock, Goldie Goldstein, Brad Kimbrough, Erik Novak, James Millerd
  • Publication number: 20060132795
    Abstract: Apparatus for splitting, imaging, and measuring wavefronts with a reference wavefront and an object wavefront. A wavefront-combining element receives and combines into a combined wavefront an object wavefront from an object and a reference wavefront. A wavefront-splitting element splits the combined wavefront into a plurality of sub-wavefronts in such a way that each of the sub-wavefronts is substantially contiguous with at least one other sub-wavefront. The wavefront-splitting element may shift the relative phase between the reference wavefront and the object wavefront of the sub-wavefronts to yield a respective plurality of phase-shifted sub-wavefronts. The wavefront-splitting element may then interfering the reference and object wavefronts of the phase-shifted sub-wavefronts to yield a respective plurality of phase-shifted interferograms. An imaging element receives and images the phase-shifted interferograms.
    Type: Application
    Filed: February 7, 2006
    Publication date: June 22, 2006
    Inventors: James Millerd, Neal Brock
  • Publication number: 20050083531
    Abstract: A multi-channel imaging system is calibrated by measuring the geometric distortion in each sub-image, generating corresponding correction factors, and applying such factors to correct subsequent image data. In addition, intensity transfer-function arrays are measured at each pixel, and further used to correct for system and detector nonlinearities and nonuniformity between images. The procedure is repeated over a range of wavelengths to produce a complete set of correction coefficients and transfer functions. When the system is used for interferometric phase measurements, multiple measurements are preferably taken and a random phase offset in the reference path length is introduced at each measurement. The multiple phase data so derived are then averaged to reduce phase-dependent systematic measurement errors.
    Type: Application
    Filed: October 16, 2003
    Publication date: April 21, 2005
    Inventors: James Millerd, Neal Brock, Larry Denneau
  • Publication number: 20050046863
    Abstract: A polarizing point-diffraction plate is used to produce common-path test and reference wavefronts with mutually orthogonal polarizations from an input wavefront. The common-path test and reference wavefronts are collimated, phase shifted and interfered, and the resulting interferograms are imaged on a detector. The interference patterns are then processed using conventional algorithms to characterize the input light wavefront.
    Type: Application
    Filed: August 29, 2003
    Publication date: March 3, 2005
    Inventors: James Millerd, Neal Brock, John Hayes, James Wyant
  • Publication number: 20050046865
    Abstract: A phase-difference sensor measures the spatially resolved difference in phase between orthogonally polarized reference and test wavefronts. The sensor is constructed as a pixelated phase-mask aligned to and imaged on a pixelated detector array. Each adjacent pixel of the phase-mask measures a predetermined relative phase shift between the orthogonally polarized reference and test beams. Thus, multiple phase-shifted interferograms can be synthesized at the same time by combining pixels with identical phase-shifts. The multiple phase-shifted interferograms can be combined to calculate standard parameters such as modulation index or average phase step. Any configuration of interferometer that produces orthogonally polarized reference and object beams may be combined with the phase-difference sensor of the invention to provide, single-shot, simultaneous phase-shifting measurements.
    Type: Application
    Filed: May 4, 2004
    Publication date: March 3, 2005
    Inventors: Neal Brock, James Millerd, James Wyant, John Hayes