Patents by Inventor Neal Jakel

Neal Jakel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240076753
    Abstract: An improved dry grind system and method for producing a sugar stream from grains or similar carbohydrate sources and/or residues, such as for biochemical production. In particular, after saccharification and prior to a sugar conversion process, a sugar/carbohydrate stream is removed from a saccharified stream. The sugar/carbohydrate stream includes a desired Dextrose Equivalent (DE) where DE describes the degree of conversion of starch to dextrose can be produced, with the such sugar stream being available for biochemical production, e.g., alcohol production, or other processes. In addition, the systems and methods also can involve the removal of certain grain components, e.g., corn kernel components, including protein and/or fiber. Sugar stream production occurs on the front end of the system and method.
    Type: Application
    Filed: November 3, 2023
    Publication date: March 7, 2024
    Inventors: Neal Jakel, Albert Pollmeier
  • Publication number: 20240060148
    Abstract: An improved dry grind system and method for producing a sugar stream from grains or similar carbohydrate sources and/or residues, such as for biochemical production. In particular, after saccharification and prior to a sugar conversion process, a sugar/carbohydrate stream is removed from a saccharified stream. The sugar/carbohydrate stream includes a desired Dextrose Equivalent (DE) where DE describes the degree of conversion of starch to dextrose can be produced, with the such sugar stream being available for biochemical production, e.g., alcohol production, or other processes. In addition, the systems and methods also can involve the removal of certain grain components, e.g., corn kernel components, including protein and/or fiber. Sugar stream production occurs on the front end of the system and method.
    Type: Application
    Filed: November 3, 2023
    Publication date: February 22, 2024
    Inventors: Neal Jakel, Albert Pollmeier
  • Publication number: 20230413858
    Abstract: A method and system for producing a high protein meal from a whole stillage byproduct produced in a grain dry-milling process for making ethanol, with optional back end milling options, is disclosed. In one embodiment, a method for producing a high protein meal from a whole stillage byproduct includes separating the whole stillage byproduct into an insoluble solids portion and a thin stillage/centrate portion, wherein at least one milling step can be applied to one or both of the insoluble solids portion and the whole stillage portion. Next, the centrate portion may be separated into a protein portion and a water-soluble solids portion. And then the protein portion can be dewatered and/or dried to define a high protein meal having at least 40 wt % protein on a dry basis.
    Type: Application
    Filed: September 7, 2023
    Publication date: December 28, 2023
    Inventors: Neal Jakel, Michael Franko, Donald M. Cannon
  • Publication number: 20230383322
    Abstract: Systems and methods for producing carbohydrate (e.g., sugar) streams (and recycling enzymes) from a pretreated or untreated biomass such as cellulosic feedstock, including, for example, “brown stock” feedstock, or waste or recycled fiber sludge produced in the pulp and paper industry, such as for biochemical (e.g., biofuel) production, are provided. In one example, the system and method can produce high purity C6 (glucose and/or fructose) and/or C5 (xylose) sugar streams, and other carbohydrates and/or fibrous materials, from cellulosic feedstocks, such as brown stock or waste fiber sludge, that can be effectively converted into various biochemical products, such as ethanol.
    Type: Application
    Filed: August 8, 2023
    Publication date: November 30, 2023
    Inventors: Jeffrey P. Robert, Neal Jakel, Donald M. Cannon
  • Patent number: 11746365
    Abstract: Systems and methods for producing carbohydrate (e.g., sugar) streams (and recycling enzymes) from a pretreated or untreated biomass such as cellulosic feedstock, including, for example, “brown stock” feedstock, or waste or recycled fiber sludge produced in the pulp and paper industry, such as for biochemical (e.g., biofuel) production, are provided. In one example, the system and method can produce high purity C6 (glucose and/or fructose) and/or C5 (xylose) sugar streams, and other carbohydrates and/or fibrous materials, from cellulosic feedstocks, such as brown stock or waste fiber sludge, that can be effectively converted into various biochemical products, such as ethanol.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: September 5, 2023
    Assignee: Fluid Quip Technologies, LLC
    Inventors: Jeffrey P. Robert, Neal Jakel, Donald M. Cannon
  • Publication number: 20230272494
    Abstract: An improved dry grind system and method for producing a sugar stream from grains or similar carbohydrate sources and/or residues, such as for biofuel production, using membrane filtration. In particular, a sugar/carbohydrate stream, which includes a desired Dextrose Equivalent (DE) where DE describes the degree of conversion of starch to dextrose (aka glucose) and/or has had removed therefrom an undesirable amount of unfermentable components, can be produced after saccharification and prior to fermentation (or other sugar conversion process) using membrane filtration, with such sugar stream being available for biofuel production, e.g., alcohol production, or other processes. In addition, the systems and methods also can involve the removal of certain grain components, e.g., corn kernel components, including protein, oil and/or fiber, prior to fermentation or other conversion systems. In other words, sugar stream production and/or grain component separation occurs on the front end of the system and method.
    Type: Application
    Filed: May 4, 2023
    Publication date: August 31, 2023
    Inventors: Neal Jakel, Albert Pollmeier
  • Publication number: 20230203552
    Abstract: An improved dry grind system and method for producing a sugar stream from grains or similar carbohydrate sources and/or residues, such as for biofuel production. In particular, a sugar/carbohydrate stream, which includes a desired Dextrose Equivalent (DE) where DE describes the degree of conversion of starch to dextrose (aka glucose) and/or has had removed therefrom an undesirable amount of unfermentable components, can be produced after saccharification and prior to fermentation (or other sugar conversion process), with such sugar stream being available for biofuel production, e.g., alcohol production, or other processes. In addition, the systems and methods also can involve the removal of certain grain components, e.g., corn kernel components, including protein, oil and/or fiber, prior to fermentation or other conversion systems. In other words, sugar stream production and/or grain component separation occurs on the front end of the system and method.
    Type: Application
    Filed: March 3, 2023
    Publication date: June 29, 2023
    Inventors: Neal Jakel, John Kwik, Michael Franko, Andrew Whalen
  • Publication number: 20230112538
    Abstract: An improved dry grind system and method for producing a sugar stream from grains or similar carbohydrate sources and/or residues, such as for biochemical production. In particular, after saccharification and prior to a sugar conversion process, a sugar/carbohydrate stream is removed from a saccharified stream. The sugar/carbohydrate stream includes a desired Dextrose Equivalent (DE) where DE describes the degree of conversion of starch to dextrose can be produced, with the such sugar stream being available for biochemical production, e.g., alcohol production, or other processes. In addition, the systems and methods also can involve the removal of certain grain components, e.g., corn kernel components, including protein and/or fiber. Sugar stream production occurs on the front end of the system and method.
    Type: Application
    Filed: October 17, 2022
    Publication date: April 13, 2023
    Inventors: Neal Jakel, Albert Pollmeier
  • Publication number: 20230079475
    Abstract: An improved dry grind system and method for producing a sugar stream from grains or similar carbohydrate sources and/or residues, such as for biochemical production, with front end oil separation. Prior to or after saccharification, oil can be removed from a sugar/carbohydrate stream. After saccharification and prior to a sugar conversion process, the sugar/carbohydrate stream includes a desired Dextrose Equivalent (DE) where DE describes the degree of conversion of starch to dextrose can be produced, with such sugar stream being available for biochemical production, e.g., alcohol production, or other processes. In addition, the systems and methods also can involve the removal of certain grain components, e.g., corn kernel components, including protein and/or fiber. In other words, oil separation and sugar stream production occurs on the front end of the system and method.
    Type: Application
    Filed: October 31, 2022
    Publication date: March 16, 2023
    Inventors: Neal Jakel, Albert Pollmeier
  • Patent number: 11597955
    Abstract: An improved dry grind system and method for producing a sugar stream from grains or similar carbohydrate sources and/or residues, such as for biofuel production. In particular, a sugar/carbohydrate stream, which includes a desired Dextrose Equivalent (DE) where DE describes the degree of conversion of starch to dextrose (aka glucose) and/or has had removed therefrom an undesirable amount of unfermentable components, can be produced after saccharification and prior to fermentation (or other sugar conversion process), with such sugar stream being available for biofuel production, e.g., alcohol production, or other processes. In addition, the systems and methods also can involve the removal of certain grain components, e.g., corn kernel components, including protein, oil and/or fiber, prior to fermentation or other conversion systems. In other words, sugar stream production and/or grain component separation occurs on the front end of the system and method.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: March 7, 2023
    Assignee: Fluid Quip Technologies, LLC
    Inventors: Neal Jakel, John Kwik, Michael Franko, Andrew Whalen
  • Patent number: 11519013
    Abstract: An improved dry grind system and method for producing a sugar stream from grains or similar carbohydrate sources and/or residues, such as for biochemical production, with front end oil separation. Prior to or after saccharification, oil can be removed from a sugar/carbohydrate stream. After saccharification and prior to a sugar conversion process, the sugar/carbohydrate stream includes a desired Dextrose Equivalent (DE) where DE describes the degree of conversion of starch to dextrose can be produced, with such sugar stream being available for biochemical production, e.g., alcohol production, or other processes. In addition, the systems and methods also can involve the removal of certain grain components, e.g., corn kernel components, including protein and/or fiber. In other words, oil separation and sugar stream production occurs on the front end of the system and method.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: December 6, 2022
    Assignee: Fluid Quip Technologies, LLC
    Inventors: Neal Jakel, Albert Pollmeier
  • Patent number: 11505838
    Abstract: An improved dry grind system and method for producing a sugar stream from grains or similar carbohydrate sources and/or residues, such as for biochemical production. In particular, after saccharification and prior to a sugar conversion process, a sugar/carbohydrate stream is removed from a saccharified stream. The sugar/carbohydrate stream includes a desired Dextrose Equivalent (DE) where DE describes the degree of conversion of starch to dextrose can be produced, with the such sugar stream being available for biochemical production, e.g., alcohol production, or other processes. In addition, the systems and methods also can involve the removal of certain grain components, e.g., corn kernel components, including protein and/or fiber. Sugar stream production occurs on the front end of the system and method.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: November 22, 2022
    Assignee: Fluid Quip Technologies, LLC
    Inventors: Neal Jakel, Albert Pollmeier
  • Publication number: 20220361525
    Abstract: A method and system are disclosed for producing a protein and fiber feed product from a whole stillage byproduct produced in a corn dry milling process for making alcohol, such as ethanol, and/or other biofuels/biochemicals. In one embodiment, the method includes separating the whole stillage byproduct into an insoluble solids portion and a centrate (solubles) portion. Thereafter, a fine fiber and protein portion may be separated from the centrate (solubles) portion. The fine fiber and protein portion may be dewatered to provide a protein and fiber feed product. In one example, the protein and fiber feed product can include insoluble solids, such as wet or dry distiller's grains with or without solubles. The resulting protein and fiber feed product may be sold and/or used as rumen feed, swine feed, chicken feed, aqua feed, food uses, or have other uses, including pharmaceutical and/or chemical usage, for example.
    Type: Application
    Filed: April 19, 2022
    Publication date: November 17, 2022
    Inventors: Neal Jakel, John Kwik
  • Patent number: 11447806
    Abstract: An improved dry grind system and method for producing a sugar stream from grains or similar carbohydrate sources and/or residues, such as for biofuel production. In particular, a sugar/carbohydrate stream, which includes a desired Dextrose Equivalent (DE) where DE describes the degree of conversion of starch to dextrose (aka glucose) and/or has had removed therefrom an undesirable amount of unfermentable components, can be produced after saccharification and prior to fermentation (or other sugar conversion process), with such sugar stream being available for biofuel production, e.g., alcohol production, or other processes. In addition, the systems and methods also can involve the removal of certain grain components, e.g., corn kernel components, including protein, oil and/or fiber, prior to fermentation or other conversion systems. In other words, sugar stream production and/or grain component separation occurs on the front end of the system and method.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: September 20, 2022
    Assignee: Fluid Quip Technologies, LLC
    Inventors: Neal Jakel, John Kwik, Michael Franko, Andrew Whalen
  • Publication number: 20220287332
    Abstract: A method and system for producing a high protein meal from a whole stillage byproduct produced in a grain dry-milling process for making ethanol, with optional back end milling options, is disclosed. In one embodiment, a method for producing a high protein meal from a whole stillage byproduct includes separating the whole stillage byproduct into an insoluble solids portion and a thin stillage/centrate portion, wherein at least one milling step can be applied to one or both of the insoluble solids portion and the whole stillage portion. Next, the centrate portion may be separated into a protein portion and a water-soluble solids portion. And then the protein portion can be dewatered and/or dried to define a high protein meal having at least 40 wt % protein on a dry basis.
    Type: Application
    Filed: March 10, 2021
    Publication date: September 15, 2022
    Inventors: Neal Jakel, Michael Franko, Donald M. Cannon
  • Publication number: 20220112450
    Abstract: A method of processing thin stillage in an ethanol refining operation is provided. In one embodiment, the method comprises treating stillage with an inverse emulsion comprising at least one anionic flocculant and an emulsifying agent selected from a sorbitan ester of a fatty acid, an ethoxylated sorbitan ester of a fatty acid, and combinations thereof, thereby forming treated stillage; clarifying the treated stillage via at least one of dissolved air flotation and induced air flotation, thereby forming clarified thin stillage and a float layer comprising oil and solids; separating the oil from the solids of the float layer; and recovering the oil.
    Type: Application
    Filed: October 11, 2021
    Publication date: April 14, 2022
    Inventor: Neal Jakel
  • Publication number: 20220081698
    Abstract: Systems and methods for producing carbohydrate (e.g., sugar) streams (and recycling enzymes) from a pretreated or untreated biomass such as cellulosic feedstock, including, for example, “brown stock” feedstock, or waste or recycled fiber sludge produced in the pulp and paper industry, such as for biochemical (e.g., biofuel) production, are provided. In one example, the system and method can produce high purity C6 (glucose and/or fructose) and/or C5 (xylose) sugar streams, and other carbohydrates and/or fibrous materials, from cellulosic feedstocks, such as brown stock or waste fiber sludge, that can be effectively converted into various biochemical products, such as ethanol.
    Type: Application
    Filed: March 29, 2021
    Publication date: March 17, 2022
    Inventors: Jeffrey P. Robert, Neal Jakel, Donald M. Cannon
  • Patent number: 11230504
    Abstract: Method for producing a fertilizer or herbicide from a whole stillage byproduct produced in a corn dry-milling process for making alcohol and system therefore is disclosed. In one embodiment, the method includes separating the whole stillage byproduct into an insoluble solids portion and a thin stillage portion. Thereafter, the thin stillage portion can be dewatered to provide a water soluble solids portion and a dewatered protein portion, which may be optionally dried. The protein in the resulting protein portion can serve as a nitrogen source and sulfur containing amino acids can serve as a sulfur source, which can be desirable components in fertilizers and herbicides. To that end, the resulting protein portion directly may be sold and/or used as a fertilizer or herbicide or can be combined with other components to provide the fertilizer or herbicide.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: January 25, 2022
    Assignee: Fluid Quip Technologies, LLC
    Inventors: Michael Franko, Neal Jakel, John Kwik
  • Patent number: 11220663
    Abstract: The present invention is directed to improved systems and processes for clarifying a thin stillage stream in a biofuel production process, such as a dry grind alcohol production process, that removes desirable amounts of insoluble solids from at least a portion of the thin stillage stream, thereby realizing any number of process enhancements.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: January 11, 2022
    Assignee: Fluid Quip Technologies, LLC
    Inventors: Neal Jakel, John Kwik, Michael Franko
  • Publication number: 20210324489
    Abstract: An improved dry grind system and method for producing a sugar stream from grains or similar carbohydrate sources and/or residues, such as for biofuel production, using membrane filtration. In particular, a sugar/carbohydrate stream, which includes a desired Dextrose Equivalent (DE) where DE describes the degree of conversion of starch to dextrose (aka glucose) and/or has had removed therefrom an undesirable amount of unfermentable components, can be produced after saccharification and prior to fermentation (or other sugar conversion process) using membrane filtration, with such sugar stream being available for biofuel production, e.g., alcohol production, or other processes. In addition, the systems and methods also can involve the removal of certain grain components, e.g., corn kernel components, including protein, oil and/or fiber, prior to fermentation or other conversion systems. In other words, sugar stream production and/or grain component separation occurs on the front end of the system and method.
    Type: Application
    Filed: June 29, 2021
    Publication date: October 21, 2021
    Inventors: Neal Jakel, Albert Pollmeier