Patents by Inventor Neal O. Fenzi

Neal O. Fenzi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12003226
    Abstract: An acoustic resonator device with low thermal impedance has a substrate and a single-crystal piezoelectric plate having a back surface attached to a top surface of the substrate via a bonding oxide (BOX) layer. An interdigital transducer (IDT) formed on the front surface of the plate has interleaved fingers disposed on a diaphragm of the plate that is formed over a cavity in the substrate. The piezoelectric plate and the BOX layer are removed from a least a portion of the surface area of the substrate to provide lower thermal resistance between the IDT and the substrate.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: June 4, 2024
    Assignee: MURATA MANUFACTURING CO., LTD
    Inventors: Greg Dyer, Chris O'Brien, Neal O. Fenzi, James R. Costa
  • Patent number: 11936358
    Abstract: An acoustic resonator device with low thermal impedance has a substrate and a single-crystal piezoelectric plate having a back surface attached to a top surface of the substrate via a bonding oxide (BOX) layer. An interdigital transducer (IDT) formed on the front surface of the plate has interleaved fingers disposed on the diaphragm. The piezoelectric plate and the BOX layer are removed from a least a portion of the surface area of the device to provide lower thermal resistance between the conductor pattern and the substrate.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: March 19, 2024
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Greg Dyer, Chris O'Brien, Neal O. Fenzi, James R. Costa
  • Patent number: 11881835
    Abstract: An acoustic resonator device with low thermal impedance has a substrate and a single-crystal piezoelectric plate having a back surface attached to a top surface of the substrate via a bonding oxide (BOX) layer. An interdigital transducer (IDT) formed on the front surface of the plate has interleaved fingers disposed on the diaphragm. The piezoelectric plate and the BOX layer are removed from a least a portion of the surface area of the device to provide lower thermal resistance between the IDT and the substrate.
    Type: Grant
    Filed: April 29, 2021
    Date of Patent: January 23, 2024
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Greg Dyer, Chris O'Brien, Neal O. Fenzi, James R. Costa
  • Publication number: 20220158615
    Abstract: Acoustic resonators, filters and methods of making resonators are disclosed. An acoustic resonator includes a substrate, a piezoelectric plate, and an acoustic Bragg reflector between a surface of the substrate and a back surface of the piezoelectric plate. An interdigital transducer (IDT) on a front surface of the piezoelectric plate includes first and second busbars and a plurality of interleaved fingers extending alternately from the first and second busbars. At least a portion of the first busbar contacts the substrate through an opening in the piezoelectric plate and acoustic Bragg reflector.
    Type: Application
    Filed: February 2, 2022
    Publication date: May 19, 2022
    Inventors: Greg Dyer, Chris O'Brien, Neal O. Fenzi, James R. Costa
  • Publication number: 20220149809
    Abstract: An acoustic resonator device with low thermal impedance has a substrate and a single-crystal piezoelectric plate having a back surface attached to a top surface of the substrate via a bonding oxide (BOX) layer. An interdigital transducer (IDT) formed on the front surface of the plate has interleaved fingers disposed on a diaphragm of the plate that is formed over a cavity in the substrate. The piezoelectric plate and the BOX layer are removed from a least a portion of the surface area of the substrate to provide lower thermal resistance between the IDT and the substrate.
    Type: Application
    Filed: May 12, 2021
    Publication date: May 12, 2022
    Inventors: Greg Dyer, Chris O'Brien, Neal O. Fenzi, James R. Costa
  • Publication number: 20220149807
    Abstract: An acoustic resonator device with low thermal impedance has a substrate and a single-crystal piezoelectric plate having a back surface attached to a top surface of the substrate via a bonding oxide (BOX) layer. An interdigital transducer (IDT) formed on the front surface of the plate has interleaved fingers disposed on the diaphragm. The piezoelectric plate and the BOX layer are removed from a least a portion of the surface area of the device to provide lower thermal resistance between the conductor pattern and the substrate.
    Type: Application
    Filed: March 30, 2021
    Publication date: May 12, 2022
    Inventors: Greg Dyer, Chris O'Brien, Neal O. Fenzi, James R. Costa
  • Publication number: 20220149808
    Abstract: An acoustic resonator device with low thermal impedance has a substrate and a single-crystal piezoelectric plate having a back surface attached to a top surface of the substrate via a bonding oxide (BOX) layer. An interdigital transducer (IDT) formed on the front surface of the plate has interleaved fingers disposed on the diaphragm. The piezoelectric plate and the BOX layer are removed from a least a portion of the surface area of the device to provide lower thermal resistance between the IDT and the substrate.
    Type: Application
    Filed: April 29, 2021
    Publication date: May 12, 2022
    Inventors: Greg Dyer, Chris O'Brien, Neal O. Fenzi, James R. Costa
  • Patent number: 10657305
    Abstract: A method for designing a narrowband acoustic wave microwave filter including: generating a modeled filter circuit design having circuit elements including an acoustic resonant element defined by an electrical circuit model that includes a parallel static branch, a parallel motional branch, and one or both of a parallel Bragg Band branch that models an upper Bragg Band discontinuity and a parallel bulk mode function that models an acoustic bulk mode loss; and generating a final circuit design. Generating the final circuit design includes optimizing the modeled filter circuit design to generate an optimized filter circuit design; comparing a frequency response of the optimized filter circuit design to requirements; selecting the optimized filter circuit design for construction into the actual acoustic microwave filter based on the comparison; and transforming the optimized filter circuit design to a design description file for input to a construction process.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: May 19, 2020
    Assignee: Resonant Inc.
    Inventors: Kurt F. Raihn, Patrick J. Turner, Neal O. Fenzi
  • Publication number: 20190392090
    Abstract: A method for designing a narrowband acoustic wave microwave filter including: generating a modeled filter circuit design having circuit elements including an acoustic resonant element defined by an electrical circuit model that includes a parallel static branch, a parallel motional branch, and one or both of a parallel Bragg Band branch that models an upper Bragg Band discontinuity and a parallel bulk mode function that models an acoustic bulk mode loss; and generating a final circuit design. Generating the final circuit design includes optimizing the modeled filter circuit design to generate an optimized filter circuit design; comparing a frequency response of the optimized filter circuit design to requirements; selecting the optimized filter circuit design for construction into the actual acoustic microwave filter based on the comparison; and transforming the optimized filter circuit design to a design description file for input to a construction process.
    Type: Application
    Filed: May 1, 2019
    Publication date: December 26, 2019
    Inventors: Kurt F. Raihn, Patrick J. Turner, Neal O. Fenzi
  • Patent number: 10437952
    Abstract: A method for designing a narrowband acoustic wave microwave filter including: generating a modeled filter circuit design having circuit elements including an acoustic resonant element defined by an electrical circuit model that includes a parallel static branch, a parallel motional branch, and one or both of a parallel Bragg Band branch that models an upper Bragg Band discontinuity and a parallel bulk mode function that models an acoustic bulk mode loss; and generating a final circuit design. Generating the final circuit design includes optimizing the modeled filter circuit design to generate an optimized filter circuit design; comparing a frequency response of the optimized filter circuit design to requirements; selecting the optimized filter circuit design for construction into the actual acoustic microwave filter based on the comparison; and transforming the optimized filter circuit design to a design description file for input to a construction process.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: October 8, 2019
    Assignee: Resonant Inc.
    Inventors: Kurt F. Raihn, Patrick J. Turner, Neal O. Fenzi
  • Patent number: 10366192
    Abstract: Non-transitory computer-readable media to perform a method for designing a multiband filter. The method includes generating an initial circuit structure comprising a desired number and type of circuit elements; generating an initial circuit design by mapping the frequency response requirements of the initial circuit structure into normalized space; generating an acoustic filter circuit design by transferring the initial filter circuit design; generating a pre-optimized circuit design by unmapping one or more circuit elements of the acoustic filter circuit design into real space and introducing parasitic effects; and communicating the pre-optimized circuit design to a filter optimizer that generates a final circuit design comprising a plurality of resonators, wherein a first resonator exhibits a high resonant frequency, a second resonator demonstrates a low resonant frequency and the difference between the low resonant frequency and the high resonant frequency is at least 1.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: July 30, 2019
    Assignee: Resonant Inc.
    Inventors: Patrick J. Turner, Richard N. Silver, Balam Quitze Andres Willemsen Cortes, Kurt F. Raihn, Neal O. Fenzi, Robert B. Hammond
  • Patent number: 10339247
    Abstract: A method of designing an acoustic microwave filter comprises generating a proposed filter circuit design having an acoustic resonant element with a defined admittance value, introducing a lumped capacitive element in parallel and a lumped inductive element in series with the resonant element, selecting a first capacitance value for the capacitive element and a first inductance value for the inductive element, thereby creating a first temperature modeled filter circuit design, simulating the first temperature modeled filter circuit design at a first operating temperature, thereby generating a first frequency response, selecting a second capacitance value for the capacitive element and a second inductance value for the inductive element, thereby creating a second temperature modeled filter circuit design, simulating the second temperature modeled filter circuit design at a second operating temperature, thereby generating a second frequency response, and comparing the first and second frequency responses to the
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: July 2, 2019
    Assignee: RESONANT INC.
    Inventors: Sean McHugh, Neal O. Fenzi
  • Publication number: 20190102490
    Abstract: Non-transitory computer-readable media to perform a method for designing a multiband filter. The method includes generating an initial circuit structure comprising a desired number and type of circuit elements; generating an initial circuit design by mapping the frequency response requirements of the initial circuit structure into normalized space; generating an acoustic filter circuit design by transferring the initial filter circuit design; generating a pre-optimized circuit design by unmapping one or more circuit elements of the acoustic filter circuit design into real space and introducing parasitic effects; and communicating the pre-optimized circuit design to a filter optimizer that generates a final circuit design comprising a plurality of resonators, wherein a first resonator exhibits a high resonant frequency, a second resonator demonstrates a low resonant frequency and the difference between the low resonant frequency and the high resonant frequency is at least 1.
    Type: Application
    Filed: November 13, 2018
    Publication date: April 4, 2019
    Inventors: Patrick J. Turner, Richard N. Silver, Balam Quitze Andres Willemsen Cortes, Kurt F. Raihn, Neal O. Fenzi, Robert B. Hammond
  • Patent number: 10140406
    Abstract: A multi-band acoustic wave microwave filter, including a signal transmission path having an input and an output; a plurality of nodes disposed along the signal transmission path; a plurality of non-resonant branches respectively coupling one or more nodes to ground, wherein each non-resonant branch comprises at least one non-resonant element; and a plurality of resonant branches that couple one or more nodes to ground and include a plurality of resonators on said branches, wherein the plurality of resonators define a first band and at least one additional band and further wherein the difference between the lowest resonant frequency and the highest resonant frequency of the first band is at least 1.25 times the average separation of the resonators.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: November 27, 2018
    Assignee: Resonant Inc.
    Inventors: Patrick J. Turner, Richard N. Silver, Balam Quitze Andres Willemsen Cortes, Kurt F. Raihn, Neal O. Fenzi, Robert B. Hammond
  • Publication number: 20180218093
    Abstract: A method for designing a narrowband acoustic wave microwave filter including: generating a modeled filter circuit design having circuit elements including an acoustic resonant element defined by an electrical circuit model that includes a parallel static branch, a parallel motional branch, and one or both of a parallel Bragg Band branch that models an upper Bragg Band discontinuity and a parallel bulk mode function that models an acoustic bulk mode loss; and generating a final circuit design. Generating the final circuit design includes optimizing the modeled filter circuit design to generate an optimized filter circuit design; comparing a frequency response of the optimized filter circuit design to requirements; selecting the optimized filter circuit design for construction into the actual acoustic microwave filter based on the comparison; and transforming the optimized filter circuit design to a design description file for input to a construction process.
    Type: Application
    Filed: March 19, 2018
    Publication date: August 2, 2018
    Inventors: Kurt F. Raihn, Patrick J. Turner, Neal O. Fenzi
  • Publication number: 20180189426
    Abstract: A multi-band acoustic wave microwave filter, including a signal transmission path having an input and an output; a plurality of nodes disposed along the signal transmission path; a plurality of non-resonant branches respectively coupling one or more nodes to ground, wherein each non-resonant branch comprises at least one non-resonant element; and a plurality of resonant branches that couple one or more nodes to ground and include a plurality of resonators on said branches, wherein the plurality of resonators define a first band and at least one additional band and further wherein the difference between the lowest resonant frequency and the highest resonant frequency of the first band is at least 1.25 times the average separation of the resonators.
    Type: Application
    Filed: February 28, 2018
    Publication date: July 5, 2018
    Inventors: Patrick J. Turner, Richard N. Silver, Balam Quitze Andres Willemsen Cortes, Kurt F. Raihn, Neal O. Fenzi, Robert B. Hammond
  • Patent number: 9959378
    Abstract: A method of designing an acoustic microwave filter in accordance with frequency response requirements comprises generating a modeled filter circuit design having a plurality of circuit elements comprising an acoustic resonant element defined by an electrical circuit model that comprises a parallel static branch, a parallel motional branch, and one or both of a parallel Bragg Band branch that models an upper Bragg Band discontinuity and a parallel bulk mode function that models an acoustic bulk mode loss. The method further comprises optimizing the modeled filter circuit design to generate an optimized filter circuit design, comparing a frequency response of the optimized filter circuit design to the frequency response requirements, and constructing the acoustic microwave filter from the optimized filter circuit design based on the comparison.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: May 1, 2018
    Assignee: RESONANT INC.
    Inventors: Kurt F. Raihn, Patrick J. Turner, Neal O. Fenzi
  • Patent number: 9934345
    Abstract: A method of designing an acoustic microwave filter in accordance with frequency response requirements.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: April 3, 2018
    Assignee: Resonant Inc.
    Inventors: Patrick J. Turner, Richard N. Silver, Balam Quitze Andres Willemsen Cortes, Kurt F. Raihn, Neal O. Fenzi, Robert B. Hammond
  • Publication number: 20170364622
    Abstract: A method of designing an acoustic microwave filter comprises generating a proposed filter circuit design having an acoustic resonant element with a defined admittance value, introducing a lumped capacitive element in parallel and a lumped inductive element in series with the resonant element, selecting a first capacitance value for the capacitive element and a first inductance value for the inductive element, thereby creating a first temperature modeled filter circuit design, simulating the first temperature modeled filter circuit design at a first operating temperature, thereby generating a first frequency response, selecting a second capacitance value for the capacitive element and a second inductance value for the inductive element, thereby creating a second temperature modeled filter circuit design, simulating the second temperature modeled filter circuit design at a second operating temperature, thereby generating a second frequency response, and comparing the first and second frequency responses to the
    Type: Application
    Filed: September 5, 2017
    Publication date: December 21, 2017
    Applicant: RESONANT INC.
    Inventors: Sean McHugh, Neal O. Fenzi
  • Publication number: 20170364611
    Abstract: A method of designing an acoustic microwave filter in accordance with frequency response requirements.
    Type: Application
    Filed: August 10, 2017
    Publication date: December 21, 2017
    Applicant: RESONANT INC.
    Inventors: Patrick J. Turner, Richard N. Silver, Balam Quitze Andres Willemsen Cortes, Kurt F. Raihn, Neal O. Fenzi, Robert B. Hammond