Patents by Inventor Neal Thomas Murphy

Neal Thomas Murphy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11443879
    Abstract: An integrated magnetic device has a magnetic core which includes layers of the magnetic material located in a trench in a dielectric layer. The magnetic material layers are flat and parallel to a bottom of the trench, and do not extend upward along sides of the trench. The integrated magnetic device is formed by forming layers of the magnetic material over the dielectric layer and extending into the trench. A protective layer is formed over the magnetic material layers. The magnetic material layers are removed from over the dielectric layer, leaving the magnetic material layers and a portion of the protective layer in the trench. The magnetic material layers along sides of the trench are subsequently removed. The magnetic material layers along the bottom of the trench provide the magnetic core.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: September 13, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Fuchao Wang, Yousong Zhang, Neal Thomas Murphy, Brian Zinn, Jonathan P. Davis
  • Publication number: 20190341181
    Abstract: An integrated magnetic device has a magnetic core which includes layers of the magnetic material located in a trench in a dielectric layer. The magnetic material layers are flat and parallel to a bottom of the trench, and do not extend upward along sides of the trench. The integrated magnetic device is formed by forming layers of the magnetic material over the dielectric layer and extending into the trench. A protective layer is formed over the magnetic material layers. The magnetic material layers are removed from over the dielectric layer, leaving the magnetic material layers and a portion of the protective layer in the trench. The magnetic material layers along sides of the trench are subsequently removed. The magnetic material layers along the bottom of the trench provide the magnetic core.
    Type: Application
    Filed: July 16, 2019
    Publication date: November 7, 2019
    Inventors: Fuchao Wang, Yousong Zhang, Neal Thomas Murphy, Brian Zinn, Jonathan P. Davis
  • Patent number: 10403424
    Abstract: An integrated magnetic device has a magnetic core which includes layers of the magnetic material located in a trench in a dielectric layer. The magnetic material layers are flat and parallel to a bottom of the trench, and do not extend upward along sides of the trench. The integrated magnetic device is formed by forming layers of the magnetic material over the dielectric layer and extending into the trench. A protective layer is formed over the magnetic material layers. The magnetic material layers are removed from over the dielectric layer, leaving the magnetic material layers and a portion of the protective layer in the trench. The magnetic material layers along sides of the trench are subsequently removed. The magnetic material layers along the bottom of the trench provide the magnetic core.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: September 3, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Fuchao Wang, Yousong Zhang, Neal Thomas Murphy, Brian Zinn, Jonathan P. Davis
  • Publication number: 20180358163
    Abstract: An integrated magnetic device has a magnetic core which includes layers of the magnetic material located in a trench in a dielectric layer. The magnetic material layers are flat and parallel to a bottom of the trench, and do not extend upward along sides of the trench. The integrated magnetic device is formed by forming layers of the magnetic material over the dielectric layer and extending into the trench. A protective layer is formed over the magnetic material layers. The magnetic material layers are removed from over the dielectric layer, leaving the magnetic material layers and a portion of the protective layer in the trench. The magnetic material layers along sides of the trench are subsequently removed. The magnetic material layers along the bottom of the trench provide the magnetic core.
    Type: Application
    Filed: June 9, 2017
    Publication date: December 13, 2018
    Applicant: Texas Instruments Incorporated
    Inventors: Fuchao Wang, Yousong Zhang, Neal Thomas Murphy, Brian Zinn, Jonathan P. Davis
  • Patent number: 10017851
    Abstract: A method of magnetic forming an integrated fluxgate sensor includes providing a patterned magnetic core on a first nonmagnetic metal or metal alloy layer on a dielectric layer over a first metal layer that is on or in an interlevel dielectric layer (ILD) which is on a substrate. A second nonmagnetic metal or metal alloy layer is deposited including over and on sidewalls of the magnetic core. The second nonmagnetic metal or metal alloy layer is patterned, where after patterning the second nonmagnetic metal or metal alloy layer together with the first nonmagnetic metal or metal alloy layer encapsulates the magnetic core to form an encapsulated magnetic core. After patterning, the encapsulated magnetic core is magnetic field annealed using an applied magnetic field having a magnetic field strength of at least 0.1 T at a temperature of at least 150° C.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: July 10, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Dok Won Lee, Mona Eissa, Neal Thomas Murphy
  • Publication number: 20170175259
    Abstract: A method of magnetic forming an integrated fluxgate sensor includes providing a patterned magnetic core on a first nonmagnetic metal or metal alloy layer on a dielectric layer over a first metal layer that is on or in an interlevel dielectric layer (ILD) which is on a substrate. A second nonmagnetic metal or metal alloy layer is deposited including over and on sidewalls of the magnetic core. The second nonmagnetic metal or metal alloy layer is patterned, where after patterning the second nonmagnetic metal or metal alloy layer together with the first nonmagnetic metal or metal alloy layer encapsulates the magnetic core to form an encapsulated magnetic core. After patterning, the encapsulated magnetic core is magnetic field annealed using an applied magnetic field having a magnetic field strength of at least 0.1 T at a temperature of at least 150° C.
    Type: Application
    Filed: December 22, 2015
    Publication date: June 22, 2017
    Inventors: DOK WON LEE, MONA EISSA, NEAL THOMAS MURPHY
  • Patent number: 8754501
    Abstract: An integrated circuit with a high precision MIM capacitor and a high precision resistor with via etch stop landing pads on the resistor heads that are formed with the capacitor bottom plate material. A process of forming an integrated circuit with a high precision MIM capacitor and a high precision resistor where via etch stop landing pads over the resistor heads are formed using the same layer that is used to form the capacitor bottom plate.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: June 17, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Imran Mahmood Khan, John Paul Campbell, Neal Thomas Murphy
  • Publication number: 20130341759
    Abstract: An integrated circuit with a high precision MIM capacitor and a high precision resistor with via etch stop landing pads on the resistor heads that are formed with the capacitor bottom plate material. A process of forming an integrated circuit with a high precision MIM capacitor and a high precision resistor where via etch stop landing pads over the resistor heads are formed using the same layer that is used to form the capacitor bottom plate.
    Type: Application
    Filed: June 14, 2013
    Publication date: December 26, 2013
    Applicant: Texas Instruments Incorporated
    Inventors: Imran Mahmood Khan, John Paul Campbell, Neal Thomas Murphy