Patents by Inventor Negus B. Adefris

Negus B. Adefris has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11274237
    Abstract: A method of making elongated abrasive particles includes five steps. Step 1) includes providing a mold having parallel linear grooves, partially interrupted at predetermined intervals by transverse obstructions. Step 2) includes filling the parallel linear grooves with a flowable abrasive particle precursor composition. Step 3) includes at least partially drying the flowable abrasive particle precursor composition to form an at least partially dried abrasive particle precursor composition. Step 4) includes separating that composition from the mold, thereby forming elongated precursor abrasive particles having a shape corresponding to portions of the parallel linear grooves disposed between the transverse obstructions. At least one of the first and second opposite ends of the elongated precursor abrasive particles comprises both a molded portion and a fractured portion. Step 5) converts the elongated precursor abrasive particles into elongated abrasive particles.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: March 15, 2022
    Assignee: 3M Innovative Properties Company
    Inventors: Dwight D. Erickson, Negus B. Adefris
  • Publication number: 20220040816
    Abstract: Apparatus includes a production tooling having a dispensing surface with a plurality of cavities and formed into an endless belt. An abrasive particle feeder dispenses shaped abrasive particles onto the dispensing surface and into the plurality of cavities. A resin coated backing receives shaped abrasive particles from the cavities of the production tooling at a deposit point. A detecting device detects a pattern transition zone as the production tooling moves in the direction of travel and provides pattern transition zone detection data to one or more controllers to control a speed of the production tooling and/or a speed of the resin coated backing as the detected pattern transition zone passes the deposit point to change a pattern density of the shaped abrasive particles in a portion of the resin coated backing corresponding to the pattern transition zone of the production tooling.
    Type: Application
    Filed: December 10, 2019
    Publication date: February 10, 2022
    Inventors: Joseph B. Eckel, Thomas J. Nelson, Aaron K. Nienaber, Ann M. Hawkins, Amelia W. Koenig, Negus B. Adefris
  • Publication number: 20210380857
    Abstract: A plurality of supported abrasive particles wherein each supported abrasive particle respectively comprises an abrasive platelet member having a major surface and having at least one crushed support member securely bonded to and proximate the major surface. Abrasive articles containing the supported abrasive particles, and methods of making supported abrasive particles are also disclosed.
    Type: Application
    Filed: October 1, 2019
    Publication date: December 9, 2021
    Inventors: Yuyang LIU, Chainika JANGU, Negus B. ADEFRIS, Ernest L. THURBER, Bradford B. WRIGHT, Geoffrey I. WILSON, Junting LI, Amelia W. KOENIG, Steven J. KEIPERT
  • Publication number: 20210362297
    Abstract: The present disclosure provides methods of making a vitreous bond abrasive article and a metal bond abrasive article. The methods include sequential steps. Step a) includes a subprocess including sequentially: i) depositing a layer of loose powder particles in a confined region; and ii) selectively applying heat via conduction or irradiation, to heat treat an area of the layer of loose powder particles. The loose powder particles include abrasive particles and organic compound particles, as well as vitreous bond precursor particles or metal particles. The layer of loose powder particles has substantially uniform thickness. Step b) includes independently carrying out step a) a number of times to generate an abrasive article preform comprising the bonded powder particles and remaining loose powder particles. Step c) includes separating remaining loose powder particles from the abrasive article preform.
    Type: Application
    Filed: June 23, 2021
    Publication date: November 25, 2021
    Inventors: Carsten Franke, Maiken Givot, Malte Korten, Robert L.W. Smithson, Brian D. Goers, Negus B. Adefris, Thomas J. Anderson, Brian A. Shukla, Michael C. Harper, Elizaveta Y. Plotnikov
  • Publication number: 20210353387
    Abstract: A dental appliance is described, the dental appliance including a polymeric substrate with a plurality of cavities for receiving one or more teeth, an arrangement of engineered microstructures on the substrate wherein the engineered microstructures include a therapeutic agent. The microstructures may be three-dimensionally engineered on a polymeric film disposed on a major surface of the polymeric substrate, wherein the microstructures extend outwards from the surface. The microstructures also comprise a compound releasable from the three-dimensionally engineered microstructures over a predetermined patient wear time.
    Type: Application
    Filed: October 11, 2019
    Publication date: November 18, 2021
    Inventors: Bhaskar V. Velamakanni, Paul R. Klaiber, Richard P. Rusin, Daniel J. Skamser, Negus B. Adefris
  • Publication number: 20210316503
    Abstract: The present disclosure provides methods of making a vitreous bond abrasive article and a metal bond abrasive article. The methods include sequential steps. Step a) includes a subprocess including sequentially: i) depositing a layer of loose powder particles in a confined region; and ii) selectively applying heat via conduction or irradiation, to heat treat an area of the layer of loose powder particles. The loose powder particles include abrasive particles and organic compound particles, as well as vitreous bond precursor particles or metal particles. The layer of loose powder particles has substantially uniform thickness. Step b) includes independently carrying out step a) a number of times to generate an abrasive article preform comprising the bonded powder particles and remaining loose powder particles. Step c) includes separating remaining loose powder particles from the abrasive article preform.
    Type: Application
    Filed: June 23, 2021
    Publication date: October 14, 2021
    Inventors: Carsten Franke, Maiken Givot, Malte Korten, Robert L.W. Smithson, Brian D. Goers, Negus B. Adefris, Thomas J. Anderson, Brian A. Shukla, Michael C. Harper, Elizaveta Y. Plotnikov
  • Publication number: 20210301186
    Abstract: An abrasive article comprises elongated abrasive particles retained in at least one binder. The elongated abrasive particles comprise a ceramic body bounded by at least two longitudinally-oriented contiguous surfaces and first and second ends separated by the at least two longitudinally-oriented surfaces. At least one of the first and second ends comprises both a molded portion and a fractured portion.
    Type: Application
    Filed: June 1, 2021
    Publication date: September 30, 2021
    Inventors: Dwight D. Erickson, Negus B. Adefris
  • Publication number: 20210268627
    Abstract: The present disclosure provides an abrasive article (10). The abrasive article (10) has a direction of use, a y-axis and a z-axis orthogonal to the y-axis and the direction of use. The abrasive article (10) further includes a backing (12) and shaped abrasive particles attached to the backing. About 5% to about 100% of the shaped abrasive particles (14) independently include a first side surface (16), a second side surface (18) opposed to the first side surface (16), a leading surface (20) connected to the first side surface (16) at a first edge (24) and connected to the second side surface (18) at a second edge (26), a rake angle (30) between the backing (12) and the leading surface (20) in a range of from about 10 degrees to about 110 degrees, and a z-direction rotational angle (50) between a line (52) intersecting the first edge (16) and second edge (18) and the direction of use (22) of the abrasive article (10) in a range of from about 10 degrees to about 170 degrees.
    Type: Application
    Filed: April 17, 2019
    Publication date: September 2, 2021
    Inventors: Negus B. Adefris, Scott R. Culler, Joseph B. Eckel, John D. Haas, Thomas J. Nelson, Aaron K. Nienaber, Steven J. Keipert, Vincent Jusuf, Fay T. Salmon, Yuzhi Xia, Michael J. Wald
  • Patent number: 11072115
    Abstract: The present disclosure provides methods of making a vitreous bond abrasive article and a metal bond abrasive article. An abrasive article preform is produced by an additive manufacturing sub-process comprising the deposition of a layer of loose powder particles in a confined region and selective heating via conduction or irradiation to heat treat an area of the layer of loose powder particles. The loose powder particles include abrasive particles and organic compound particles, as well as vitreous bond precursor particles or metal particles. The abrasive article preform produced by additive manufacturing is subsequently heated to provide the vitreous bond abrasive article comprising the abrasive particles retained in a vitreous bond material, or to provide the metal bond abrasive article. Also, the methods include receiving, by an additive manufacturing device having a processor, a digital object specifying data for an abrasive article, and generating the abrasive article with the manufacturing device.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: July 27, 2021
    Assignee: 3M Innovative Properties Company
    Inventors: Carsten Franke, Maiken Givot, Malte Korten, Robert L. W. Smithson, Brian D. Goers, Negus B. Adefris, Thomas J. Anderson, Brian A. Shukla, Michael C. Harper, Elizaveta Y. Plotnikov
  • Patent number: 11072053
    Abstract: The present disclosure provides methods of making a vitreous bond abrasive article and a metal bond abrasive article. The methods include sequential steps. Step a) includes a subprocess including sequentially: i) depositing a layer of loose powder particles in a confined region; and ii) selectively applying heat via conduction or irradiation, to heat treat an area of the layer of loose powder particles. The loose powder particles include abrasive particles and organic compound particles, as well as vitreous bond precursor particles or metal particles. The layer of loose powder particles has substantially uniform thickness. Step b) includes independently carrying out step a) a number of times to generate an abrasive article preform comprising the bonded powder particles and remaining loose powder particles. Step c) includes separating remaining loose powder particles from the abrasive article preform.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: July 27, 2021
    Assignee: 3M Innovative Properties Company
    Inventors: Carsten Franke, Maiken Givot, Malte Korten, Robert L. W. Smithson, Brian D. Goers, Negus B. Adefris, Thomas J. Anderson, Brian A. Shukla, Michael C. Harper, Elizaveta Y. Plotnikov
  • Publication number: 20210214597
    Abstract: The present inventive subject matter provides an abrasive particle. The abrasive particle can include an elongated body that is defined between opposed first and second ends. Each end defines a substantially planar surface. An axis extends through the first and second ends, and each end has a respective first and second cross-sectional area. At least one of the first and second ends is oriented at an angle relative to the axis that is less than 90 degrees. The elongated body has a variable cross-sectional area centered along the axis. At least one cross-sectional area between the first and second ends represents a local minimum cross-sectional area.
    Type: Application
    Filed: March 24, 2021
    Publication date: July 15, 2021
    Inventor: Negus B. Adefris
  • Patent number: 10988648
    Abstract: The present inventive subject matter provides an abrasive particle. The abrasive particle can include an elongated body that is defined between opposed first and second ends. Each end defines a substantially planar surface. An axis extends through the first and second ends, and each end has a respective first and second cross-sectional area. At least one of the first and second ends is oriented at an angle relative to the axis that is less than 90 degrees. The elongated body has a variable cross-sectional area centered along the axis. At least one cross-sectional area between the first and second ends represents a local minimum cross-sectional area.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: April 27, 2021
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventor: Negus B. Adefris
  • Patent number: 10987780
    Abstract: Shaped abrasive particles each having a sloping sidewall. Each of the shaped abrasive particles containing alpha alumina and having a first face and a second face separated by a thickness, t. The shaped abrasive particles further having a draft angle ? between the second face and the sloping sidewall, and the draft angle ? is between about 95 degrees to about 125 degrees.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: April 27, 2021
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Negus B. Adefris, Dwight D. Erickson, Scott R. Culler, John T. Boden, John D. Haas
  • Publication number: 20210094149
    Abstract: Methods of making metal bond abrasive articles via powder bed jetting are disclosed. Metal bond abrasive articles prepared by the method include abrasive articles having arcuate or tortuous cooling channels, abrasive segments, abrasive wheels, and rotary dental tools.
    Type: Application
    Filed: December 11, 2020
    Publication date: April 1, 2021
    Inventors: Carsten Franke, Brian D. Goers, Robert L.W. Smithson, Negus B. Adefris, Brian A. Shukla, Michael C. Harper, Elizaveta Y. Plotnikov
  • Patent number: 10888973
    Abstract: Methods of making metal bond abrasive articles via powder bed jetting are disclosed. Metal bond abrasive articles prepared by the method include abrasive articles having arcuate or tortuous cooling channels, abrasive segments, abrasive wheels, and rotary dental tools.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: January 12, 2021
    Assignee: 3M Innovative Properties Company
    Inventors: Carsten Franke, Brian D. Goers, Robert L. W. Smithson, Negus B. Adefris, Brian A. Shukla, Michael C. Harper, Elizaveta Y. Plotnikov
  • Publication number: 20210002533
    Abstract: A shaped abrasive agglomerate particle includes a shaped abrasive particle bonded in a siliceous matrix. The siliceous matrix comprises a reaction product of an alkali silicate and a hardener. The abrasive agglomerate particles are useful in abrasive articles. Methods of making the shaped abrasive agglomerate particle and abrading a workpiece are also described.
    Type: Application
    Filed: March 1, 2019
    Publication date: January 7, 2021
    Inventors: Taisiya Skorina, Negus B. Adefris
  • Publication number: 20200277522
    Abstract: A method of making abrasive particles includes: providing a slurry comprising non-colloidal solid particles and a liquid vehicle; forming at least a portion of the slurry into shaped bodies contacting a substrate; at least partially drying the shaped bodies to provide shaped abrasive precursor particles; separating at least a portion of the shaped abrasive precursor particles from the substrate; and converting at least a portion of the shaped abrasive precursor particles into shaped abrasive particles. The shaped abrasive particles comprise alpha alumina having an average crystal grain size of 0.8 to 8 microns and an apparent density that is at least 92 percent of the true density. Each shaped abrasive particle has a respective surface comprising a plurality of smooth sides that form at least four vertexes. Shaped abrasive particles, abrasive articles including them, and methods of using are also disclosed.
    Type: Application
    Filed: May 20, 2020
    Publication date: September 3, 2020
    Inventors: Anatoly Z. Rosenflanz, Negus B. Adefris
  • Publication number: 20200231851
    Abstract: A method of making elongated abrasive particles includes five steps. Step 1) includes providing a mold having parallel linear grooves, partially interrupted at predetermined intervals by transverse obstructions. Step 2) includes filling the parallel linear grooves with a flowable abrasive particle precursor composition. Step 3) includes at least partially drying the flowable abrasive particle precursor composition to form an at least partially dried abrasive particle precursor composition. Step 4) includes separating that composition from the mold, thereby forming elongated precursor abrasive particles having a shape corresponding to portions of the parallel linear grooves disposed between the transverse obstructions. At least one of the first and second opposite ends of the elongated precursor abrasive particles comprises both a molded portion and a fractured portion. Step 5) converts the elongated precursor abrasive particles into elongated abrasive particles.
    Type: Application
    Filed: September 14, 2018
    Publication date: July 23, 2020
    Inventors: Dwight D. Erickson, Negus B. Adefris
  • Patent number: 10696883
    Abstract: A method of making abrasive particles includes: providing a slurry comprising non-colloidal solid particles and a liquid vehicle; forming at least a portion of the slurry into shaped bodies contacting a substrate; at least partially drying the shaped bodies to provide shaped abrasive precursor particles; separating at least a portion of the shaped abrasive precursor particles from the substrate; and converting at least a portion of the shaped abrasive precursor particles into shaped abrasive particles. The shaped abrasive particles comprise alpha alumina having an average crystal grain size of 0.8 to 8 microns and an apparent density that is at least 92 percent of the true density. Each shaped abrasive particle has a respective surface comprising a plurality of smooth sides that form at least four vertexes. Shaped abrasive particles, abrasive articles including them, and methods of using are also disclosed.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: June 30, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Anatoly Z. Rosenflanz, Negus B. Adefris
  • Publication number: 20200199425
    Abstract: Various embodiments disclosed relate to an abrasive article (10). The abrasive article (10 includes a backing (12) defining a major surface. The abrasive article (10) includes an abrasive layer including a plurality of tetrahedral abrasive particles (16) attached to the backing (12). The tetrahedral abrasive particles (16) include four faces joined by six edges terminating at four vertices (40, 42, 44, 46). Each one of the four faces contacts three of the four faces, and a major portion of the tetrahedral abrasive particles (16) have at least one of the vertices (40, 42, 44, 46) oriented in substantially a same direction.
    Type: Application
    Filed: May 11, 2018
    Publication date: June 25, 2020
    Inventors: Laura M. Lara Rodriguez, Chainika Jangu, Scott R. Culler, Negus B. Adefris, Gregory S. Mueller, Jon T. Schwartz, Brian G. Koethe, Robinette S. Alkhas, Ronald D. Apple, Ernest L. Thurber