Patents by Inventor Neil Gerein

Neil Gerein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11614545
    Abstract: Systems and methods are provided for utilizing a connector to connect an external antenna to a mobile device. GNSS signals, associated with at least two different frequency bands, may be received at the external antenna and the GNSS signals may be transmitted to a connector module of the connector. The connector module may convert analog GNSS signals to generate digital radio frequency (RF) signals. The connector module may encrypt the digital RF signals to generate encrypted digital RF signals. The encrypted digital RF signals may be transmitted from the connector module to the mobile device. A multifrequency GNSS functionality module of the chipset may utilize decrypted digital RF signals to obtain GNSS raw measurements. The multifrequency GNSS functionality module and/or an application executing on the mobile device may utilize the GNSS raw measurements to compute position, velocity, and/or time (PVT).
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: March 28, 2023
    Assignee: NovAtel Inc.
    Inventors: Miguel Amor, Neil Gerein
  • Publication number: 20210305680
    Abstract: Systems and methods are provided for utilizing a connector to connect an external antenna to a mobile device. GNSS signals, associated with at least two different frequency bands, may be received at the external antenna and the GNSS signals may be transmitted to a connector module of the connector. The connector module may convert analog GNSS signals to generate digital radio frequency (RF) signals. The connector module may encrypt the digital RF signals to generate encrypted digital RF signals. The encrypted digital RF signals may be transmitted from the connector module to the mobile device. A multifrequency GNSS functionality module of the chipset may utilize decrypted digital RF signals to obtain GNSS raw measurements. The multifrequency GNSS functionality module and/or an application executing on the mobile device may utilize the GNSS raw measurements to compute position, velocity, and/or time (PVT).
    Type: Application
    Filed: March 26, 2020
    Publication date: September 30, 2021
    Inventors: Miguel Amor, Neil Gerein
  • Patent number: 6922167
    Abstract: A GNSS receiver tracks the AltBOC (15,10), or composite E5a and E5b, codes using hardware that locally generates the complex composite signal by combining separately generated real and the imaginary components of the complex signal. To track the dataless composite pilot code signals that are on the quadrature channel of the AltBOC signal, the receiver operates PRN code generators that produce replica E5a and E5b PRN codes and square wave generators that generate the real and imaginary components of the upper and lower subcarriers, and combines the signals to produce a locally generated complex composite code. The receiver removes the complex composite code from the received signal by multiplying the received signal, which has been downconverted to baseband I and Q signal components, by the locally generated complex composite code. The receiver then uses the results, which are correlated I and Q prompt signal values, to estimate the center frequency carrier phase angle tracking error.
    Type: Grant
    Filed: October 8, 2003
    Date of Patent: July 26, 2005
    Assignee: European Space Agency
    Inventor: Neil Gerein
  • Publication number: 20050012664
    Abstract: A GNSS receiver tracks the AltBOC (15,10), or composite E5a and E5b, codes using hardware that locally generates the complex composite signal by combining separately generated real and the imaginary components of the complex signal. To track the dataless composite pilot code signals that are on the quadrature channel of the AltBOC signal, the receiver operates PRN code generators that produce replica E5a and E5b PRN codes and square wave generators that generate the real and imaginary components of the upper and lower subcarriers, and combines the signals to produce a locally generated complex composite code. The receiver removes the complex composite code from the received signal by multiplying the received signal, which has been downconverted to baseband I and Q signal components, by the locally generated complex composite code. The receiver then uses the results, which are correlated I and Q prompt signal values, to estimate the center frequency carrier phase angle tracking error.
    Type: Application
    Filed: October 8, 2003
    Publication date: January 20, 2005
    Inventor: Neil Gerein