Patents by Inventor Neil Gershenfeld

Neil Gershenfeld has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10576701
    Abstract: A process for producing a composite part includes (a) applying a loose carbon filament to a receiving portion of a first mold piece; (b) reversibly coupling the first mold piece with at least a second mold piece to form a first mold layer, wherein an interior region of the first mold layer includes a pocket configured to receive a curable resin, the pocket having a shape of the composite part; (c) infusing the curable resin into the pocket; and (d) curing the resin to form the composite part.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: March 3, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Sam Calisch, Neil Gershenfeld, Spencer Wilson
  • Patent number: 10498342
    Abstract: A system and method for producing discretely assembled logic blocks where the logic block assemblies are a 3-dimensional representation of the normal digital design hierarchy. The blocks contain embedded logical functions that are built up from only a few basic 2-dimensional parts that are assembled into a 3-dimensional structure that realizes a particular logic or computing element. These structures can be combined to produce more complex digital structures and even processors. The two basic structural parts are a node and a strut with the strut typically including an embedded logic function. These are combined to produce spatially distributed structures.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: December 3, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: William Kai Langford, Amanda Ghassaei, Neil Gershenfeld
  • Publication number: 20190225949
    Abstract: A trans-disciplinary system for cell-free biosynthesis includes a cell-free transcription-translation (TX-TL) tool and modular, generalizable microfluidic architectures. Both components of the system are independently functional and are combinable into a cell-free biosynthesis platform. In the first component, modular plasmid libraries are used to program bacterial cell-free TX-TL systems. Each plasmid holds one gene or operon, and all the genes are controlled by the same promoter, so that the stoichiometry of enzyme synthesis is determined by the stoichiometry of plasmids in the reaction. In the second part, in order to facilitate high throughput mixing and matching of gene units from the modular plasmid libraries, a modular, reconfigurable, flexible, and scalable microfluidic architecture is employed.
    Type: Application
    Filed: September 20, 2018
    Publication date: July 25, 2019
    Applicants: Massachusetts Institute of Technology, Regents of the University of Minnesota
    Inventors: Andreas Mershin, Vincent Noireaux, James Francis Pelletier, Neil A. Gershenfeld
  • Publication number: 20190189135
    Abstract: A method for hiding data within cover audio uses a set of sample codebook waveforms that are each assigned a unique representative digit value. A hidden data sequence representing the data is formed from the waveforms by concatenation of the waveforms assigned to the digit values of the data. The sequence is superimposed upon segments of the cover audio at a fractional amplitude. After transmission, the received signal is decompressed if necessary, the hidden data sequence is recovered from the cover audio, and the data is recovered from the hidden data sequence. This may be done by recovering the locations of the codebook waveforms and interpolating the time markers of the locations. The recovered data may be cleaned up by using estimated distances between successive cross-correlations to discard extraneous correlation peaks and sequence recurrence to probabilistically delete overlapping correlation peaks.
    Type: Application
    Filed: November 2, 2018
    Publication date: June 20, 2019
    Applicant: Massachusetts Institute of Technology
    Inventors: Ishwarya Ananthabhotla, Neil Gershenfeld
  • Publication number: 20190190523
    Abstract: A system and method for producing discretely assembled logic blocks where the logic block assemblies are a 3-dimensional representation of the normal digital design hierarchy. The blocks contain embedded logical functions that are built up from only a few basic 2-dimensional parts that are assembled into a 3-dimensional structure that realizes a particular logic or computing element. These structures can be combined to produce more complex digital structures and even processors. The two basic structural parts are a node and a strut with the strut typically including an embedded logic function. These are combined to produce spatially distributed structures.
    Type: Application
    Filed: October 15, 2018
    Publication date: June 20, 2019
    Inventors: William Kai Langford, Amanda Ghassaei, Neil Gershenfeld
  • Publication number: 20190184351
    Abstract: The invention comprises a novel modular, generalizable meso-micro-nano-fluidic platform apparatus, design and methodology which in exemplary embodiments may be applied in conjunction with a novel external triggering and automation/feedback loop control mechanism deployed via computer to explore the phase space of single or double emulsification for applications including the encapsulation of hydrophilic active pharmacological ingredients (APIs). End use applications include the mass production of particulate encapsulation of hydrophobic or hydrophilic APIs with automatic or user-supervised feedback methodology to control and discover mass production or per-drug customized settings of interest for the manufacture of novel or extant therapeutics.
    Type: Application
    Filed: August 2, 2018
    Publication date: June 20, 2019
    Applicant: Massachusetts Institute of Technology
    Inventors: David Lai, Filippos Touriomousis, Andreas Mershin, Neil Gershenfeld
  • Publication number: 20190146043
    Abstract: Magnetic load cells that measure force and/or torque are constructed from magnets and one or more arrays of magnetic field sensors. The magnetic field sensors are structured in a tight array where the array is attached to a first portion of a frame. The magnets are operated in pairs polarized in opposition to one-another. In particular, pairs of concentric magnets create sharp field boundaries. The magnets are attached to a second portion of the frame with the magnets separated from the array of field sensors by a small gap. The second portion of the frame is free to displace or rotate in relation to the first portion of the frame when a force or torque is applied to it. The displacement results in a measurable differential change in magnetic field reported by the array that can be sampled and processed to relate to the applied force or torque.
    Type: Application
    Filed: November 2, 2018
    Publication date: May 16, 2019
    Applicant: Massachusetts Institute of Technology
    Inventors: Samuel E. Calisch, Neil A. Gershenfeld
  • Publication number: 20190077030
    Abstract: A system of flexural, actuating, and semiconducting elements of part-types necessary to assemble actuated robotic systems. These parts are joined with a common interface, interlocking with neighboring parts to form a regular lattice structure. Primary considerations for the design of the part interfaces include ease of assembly and the ability to transfer mechanical loads and electronic signals to neighboring parts. The parts are designed to be assembled vertically so structures can he built incrementally one part at a time. They can be easily fabricated at a range of length-scales using a variety of two-dimensional manufacturing processes. These processes include, for example, stamping and laminating, which enable high-throughput production. The simple mechanical interfaces between parts also enable disassembly allowing for reconfigurability and reuse. The interlocking nature of these assemblies allows loads to be distributed through many parallel load-paths.
    Type: Application
    Filed: August 23, 2018
    Publication date: March 14, 2019
    Applicant: Massachusetts Institute of Technology
    Inventors: William Kai Langford, Amanda Ghassaei, Neil Gershenfeld
  • Patent number: 10155313
    Abstract: An alternative to additive manufacturing is disclosed, introducing an end-to-end workflow in which discrete building blocks are reversibly joined to produce assemblies called digital materials. Described is the design of the bulk-material building blocks and the devices that are assembled from them. Detailed is the design and implementation of an automated assembler, which takes advantage of the digital material structure to avoid positioning errors within a large tolerance. To generate assembly sequences, a novel CAD/CAM workflow is described for designing, simulating, and assembling digital materials. The structures assembled using this process have been evaluated, showing that the joints perform well under varying conditions and that the assembled structures are functionally precise.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: December 18, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: William Kai Langford, Matthew Eli Carney, Benjamin Jenett, Neil Gershenfeld
  • Patent number: 10155314
    Abstract: A machine that is capable of assembling a copy of itself from a feedstock of parts is described. The machine operates on a lattice or grid on which it is able to move and from which it receives power and control signals. The machine (assembler) is composed of modules that each perform some functionality. In the simplest case, only three module types are needed: a linear step module, a gripper, and an anchor. The linear step module is capable of moving from one lattice location to the next, the gripper module is capable of gripping other modules, and the anchor module is capable of attaching the machine to the grid. With these three primitives it is possible for this simple machine to move on the grid using inchworm-like motions, pick up other modules, and assemble a copy of itself.
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: December 18, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: William Kai Langford, Amanda Ghassaei, Neil Gershenfeld
  • Patent number: 10145110
    Abstract: A set of machines and related systems build structures by the additive assembly of discrete parts. These digital material assemblies constrain the constituent parts to a discrete set of possible positions and orientations. In doing so, the structures exhibit many of the properties inherent in digital communication such as error correction, fault tolerance and allow the assembly of precise structures with comparatively imprecise tools. Assembly of discrete cellular lattices by a Modular Isotropic Lattice Extruder System (MILES) is implemented by pulling strings of lattice elements through a forming die that enforces geometry constraints that lock the elements into a rigid structure that can then be pushed against and extruded out of the die as an assembled, load bearing structure.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: December 4, 2018
    Inventors: Matthew Eli Carney, Benjamin Jenett, Neil Gershenfeld
  • Publication number: 20180272588
    Abstract: Issues with pleat walled honeycombs are solved by replacing polygonal creases with curved creases. As with a conventional straight-walled honeycomb, these strips can be combined into a space-filling honeycomb structure. The benefits of these curved creases are threefold. First, the stress concentrations mentioned above with pleat-walled honeycombs are mitigated. The stress due to finite material thickness is spread more evenly over the crease line, instead of being concentrated at a point, as with pleat walled honeycombs. As a result, the maximal value observed is lower and the adverse effects are reduced. Second, the curved creases also serve to give better control over material properties, and third, the curved crease honeycombs do not require any of the horizontally-running creases. The curves are typically mathematical curves that can be computed algebraically or by solving a differential equation.
    Type: Application
    Filed: March 23, 2018
    Publication date: September 27, 2018
    Applicant: Massachusetts Institute of Technology
    Inventors: Samuel E. Calisch, Neil A. Gershenfeld
  • Patent number: 10046820
    Abstract: A robotic platform for traversing and manipulating a modular 3D lattice structure is described. The robot is designed specifically for its tasks within a structured environment, and is simplified in terms of its numbers of degrees of freedom (DOF). This allows for simpler controls and a reduction of mass and cost. Designing the robot relative to the environment in which it operates results in a specific type of robot called a “relative robot”. Depending on the task and environment, there can be a number of relative robots. This invention describes a bipedal robot which can locomote across a periodic lattice structure made of building block parts. The robot is able to handle, manipulate, and transport these blocks when there is more than one robot. Based on a general inchworm design, the robot has added functionality while retaining minimal complexity, and can perform numerous maneuvers for increased speed, reach, and placement.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: August 14, 2018
    Assignee: Massachusetts Institute for Technology
    Inventors: Benjamin Jenett, Kenneth Cheung, Neil Gershenfeld
  • Patent number: 10012569
    Abstract: Fluid-based no-moving part logic devices are constructed from complex sequences of micro- and nanofluidic channels, on-demand bubble/droplet modulators and generators for programming the devices, and micro- and nanofluidic droplet/bubble memory elements for storage and retrieval of biological or chemical elements. The input sequence of bubbles/droplets encodes information, with the output being another sequence of bubbles/droplets or on-chip chemical synthesis. For performing a set of reactions/tasks or process control, the modulators can be used to program the device by producing a precisely timed sequence of bubbles/droplets, resulting in a cascade of logic operations within the micro- or nanofluidic channel sequence, utilizing the generated droplets/bubbles as a control. The devices are based on the principle of minimum energy interfaces formed between the two fluid phases enclosed inside precise channel geometries.
    Type: Grant
    Filed: August 2, 2016
    Date of Patent: July 3, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Manu Prakash, Neil Gershenfeld
  • Publication number: 20180162087
    Abstract: Flexural digital materials are discrete parts that can be assembled into a lattice structure to produce an actuatable structure capable of coordinated reversible spatially-distributed deformation. The structure comprises a set of discrete flexural digital material units assembled according to a lattice geometry, with a majority of the discrete units being connected, or adapted to be connected, to at least two other units according to the geometry. In response to certain types of loading of the structure, a coordinated reversible spatially-distributed deformation of at least part of the structure occurs. The deformation of the structure is due to the shape or material composition of the discrete units, the configuration of connections between the units, and/or the configuration of the lattice geometry. Exemplary types of such actuatable structures include airplane wing sections and robotic leg structures.
    Type: Application
    Filed: November 7, 2017
    Publication date: June 14, 2018
    Applicant: Massachusetts Institute of Technology
    Inventors: Kenneth C. Cheung, Samuel Eli Calisch, Neil A. Gershenfeld
  • Publication number: 20180009110
    Abstract: An alternative to additive manufacturing is disclosed, introducing an end-to-end workflow in which discrete building blocks are reversibly joined to produce assemblies called digital materials. Described is the design of the bulk-material building blocks and the devices that are assembled from them. Detailed is the design and implementation of an automated assembler, which takes advantage of the digital material structure to avoid positioning errors within a large tolerance. To generate assembly sequences, a novel CAD/CAM workflow is described for designing, simulating, and assembling digital materials. The structures assembled using this process have been evaluated, showing that the joints perform well under varying conditions and that the assembled structures are functionally precise.
    Type: Application
    Filed: April 22, 2016
    Publication date: January 11, 2018
    Inventors: William Langford, Matthew Eli Carney, Benjamin Jenett, Neil Gershenfeld
  • Publication number: 20170368679
    Abstract: A robotic platform for traversing and manipulating a modular 3D lattice structure is described. The robot is designed specifically for its tasks within a structured environment, and is simplified in terms of its numbers of degrees of freedom (DOF). This allows for simpler controls and a reduction of mass and cost. Designing the robot relative to the environment in which it operates results in a specific type of robot called a “relative robot”. Depending on the task and environment, there can be a number of relative robots. This invention describes a bipedal robot which can locomote across a periodic lattice structure made of building block parts. The robot is able to handle, manipulate, and transport these blocks when there is more than one robot. Based on a general inchworm design, the robot has added functionality while retaining minimal complexity, and can perform numerous maneuvers for increased speed, reach, and placement.
    Type: Application
    Filed: June 26, 2017
    Publication date: December 28, 2017
    Inventors: Benjamin Jenett, Kenneth Cheung, Neil Gershenfeld
  • Patent number: 9834747
    Abstract: In exemplary implementations, transplantation of nucleic acids into cells occurs in microfluidic chambers. The nucleic acids may be large nucleic acid molecules with more than 100 kbp. In some cases, the microfluidic chambers have only one orifice that opens to a flow channel. In some cases, flow through a microfluidic chamber temporarily ceases due to closing one or more valves. Transplantation occurs during a period in which the contents of the chambers are shielded from shear forces. Diffusion, centrifugation, suction from a vacuum channel, or dead-end loading may be used to move cells or buffers into the chambers.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: December 5, 2017
    Assignee: Massachusetts Institute of Technology
    Inventors: Andreas Mershin, James Pelletier, Neil Gershenfeld, John Glass, Elizabeth Strychalski
  • Patent number: 9809001
    Abstract: Flexural digital materials are discrete parts that can be assembled into a lattice structure to produce an actuatable structure capable of coordinated reversible spatially-distributed deformation. The structure comprises a set of discrete flexural digital material units assembled according to a lattice geometry, with a majority of the discrete units being connected, or adapted to be connected, to at least two other units according to the geometry. In response to certain types of loading of the structure, a coordinated reversible spatially-distributed deformation of at least part of the structure occurs. The deformation of the structure is due to the shape or material composition of the discrete units, the configuration of connections between the units, and/or the configuration of the lattice geometry. Exemplary types of such actuatable structures include airplane wing sections and robotic leg structures.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: November 7, 2017
    Assignee: Massachusetts Institute of Technology
    Inventors: Kenneth C. Cheung, Samuel Eli Calisch, Neil A. Gershenfeld
  • Patent number: 9809977
    Abstract: A set of machines and related systems build structures by the additive assembly of discrete parts. These digital material assemblies constrain the constituent parts to a discrete set of possible positions and orientations. In doing so, the structures exhibit many of the properties inherent in digital communication such as error correction, fault tolerance and allow the assembly of precise structures with comparatively imprecise tools. Assembly of discrete cellular lattices by a Modular Isotropic Lattice Extruder System (MILES) is implemented by pulling strings of lattice elements through a forming die that enforces geometry constraints that lock the elements into a rigid structure that can then be pushed against and extruded out of the die as an assembled, loadbearing structure.
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: November 7, 2017
    Assignee: Massachusetts Institute of Technology
    Inventors: Matthew Eli Carney, Benjamin Jenett, Neil Gershenfeld