Patents by Inventor Neil Taylor

Neil Taylor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150323070
    Abstract: The present disclosure relates to a braking system and, more particularly, to a braking system for engaging a brake mechanism as a waiting brake for a load carrying vehicle. The braking system utilises an electrohydraulic brake control mechanism comprising at least one automatic retard control valve to engage the brake mechanism, which is activated by a dual function apparatus which also controls another operation of the vehicle.
    Type: Application
    Filed: May 9, 2014
    Publication date: November 12, 2015
    Applicant: Caterpillar SARL
    Inventors: Neil Taylor, John Chapman, Adam Adeeb, David Richard Wisley, Jonathan Trawford, Samuel Alec Roberts, Stephen Thompson, Andrew Colin Ellis, John D. Gates
  • Publication number: 20150323071
    Abstract: The present disclosure relates to a vehicle having a braking system and a method of engaging the braking system. The braking system engages a brake mechanism as a waiting brake. The vehicle has a dual function device which is configured such that when the dual function device is activated when the vehicle transmission system is in a drive mode, the transmission system is maintained in that drive mode, and when the dual function device is activated when the transmission system is in the neutral mode, the brake mechanism is engaged.
    Type: Application
    Filed: May 9, 2014
    Publication date: November 12, 2015
    Applicant: Caterpillar SARL
    Inventors: John Chapman, David Thompson, Andrew Colin Ellis, Anthony James Pollock, Roger William Tansley, James Tarelli, Neil Taylor, Samuel Alec Roberts
  • Publication number: 20150291423
    Abstract: A method of producing nitride nanoparticles comprises reacting at least one organometallic compound, for example an alkyl metal, with at least one source of nitrogen. The reaction may involve one or more liquid phase organometallic compounds, or may involve one or more liquid phase organometallic compounds dissolved in a solvent or solvent mixture. The reaction constituents may be heated to a desired reaction temperature (for example in the range 40° C. to 300° C.).
    Type: Application
    Filed: November 12, 2013
    Publication date: October 15, 2015
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Alastair James Daniel Grundy, Peter Neil Taylor, Michael Alan Schreuder, Stewart Edward Hooper, Jonathan Heffernan
  • Publication number: 20150266459
    Abstract: A system and method are provided for enhancing the slope-holding capability of an earth-moving machine. The machine includes a plurality of ground-engaging elements and a first parking brake configured to brake a first subset of the plurality of ground-engaging elements. A second parking brake is mounted and is configured to brake a second subset of the plurality of ground-engaging elements. A brake controller is configured to sense engagement of the first parking brake and to engage the second parking brake when the first parking brake is engaged only if one or more machine state criteria are also met. In an embodiment, the one or more machine state criteria include zero machine speed, neutral transmission state, and a machine slope that exceeds a predetermined threshold slope.
    Type: Application
    Filed: March 21, 2014
    Publication date: September 24, 2015
    Applicant: Caterpillar Inc.
    Inventors: John Gates, Biagio Ciarla, Josh Nolke, Nasim Suterwala, Andrew Ellis, Neil Taylor, Ian R.A Hawkes
  • Patent number: 9143312
    Abstract: Rather than using separate sample rate offset and phase offset estimation algorithms for coarse timing synchronization and fine timing synchronization of a receiver timing, respectively, one phase error algorithm can be used for both the coarse and fine timing synchronization. In order to perform coarse timing synchronization the phase error indications sampled over a sampling period are used to form an error vector, and a Fourier transform can then be applied to the error vector. An analysis of the Fourier transform of the error vector can be used to determine a frequency component identifying an offset between the receiver frequency and the signal frequency. The frequency of the receiver timing can then be adjusted in accordance with the identified offset, thereby performing the coarse timing synchronization. Once the coarse timing synchronization has been applied, the same phase error algorithm may be used, without the Fourier transform, to implement the fine timing synchronization.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: September 22, 2015
    Assignee: Imagination Technologies Limited
    Inventor: Neil Taylor
  • Publication number: 20150180645
    Abstract: Rather than using separate sample rate offset and phase offset estimation algorithms for coarse timing synchronisation and fine timing synchronisation of a receiver timing, respectively, one phase error algorithm can be used for both the coarse and fine timing synchronisation. In order to perform coarse timing synchronisation the phase error indications sampled over a sampling period are used to form an error vector, and a Fourier transform can then be applied to the error vector. An analysis of the Fourier transform of the error vector can be used to determine a frequency component identifying an offset between the receiver frequency and the signal frequency. The frequency of the receiver timing can then be adjusted in accordance with the identified offset, thereby performing the coarse timing synchronisation. Once the coarse timing synchronisation has been applied, the same phase error algorithm may be used, without the Fourier transform, to implement the fine timing synchronisation.
    Type: Application
    Filed: December 19, 2014
    Publication date: June 25, 2015
    Inventor: Neil Taylor
  • Patent number: 8951439
    Abstract: A population of light-emissive nitride nanoparticles has a photoluminescence quantum yield of at least 10% and an emission spectrum having a full width at half maximum intensity (FWHM) of less than 100 nm. One suitable method of producing light-emissive nitride nanoparticles comprises a first stage of heating a reaction mixture consisting essentially of nanoparticle precursors in a solvent, the nanoparticle precursors including at least one metal-containing precursor and at least one first nitrogen-containing precursor, and maintaining the reaction mixture at a temperature to seed nanoparticle growth. It further comprises a second stage of adding at least one second nitrogen-containing precursor to the reaction mixture thereby to promote nanoparticle growth.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: February 10, 2015
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Michael Alan Schreuder, Peter Neil Taylor
  • Patent number: 8945964
    Abstract: A method of manufacturing a nitride nanoparticle comprises manufacturing the nitride nanostructure from constituents including: a material containing metal, silicon or boron, a material containing nitrogen, and a capping agent having an electron-accepting group for increasing the quantum yield of the nitride nanostructure. Nitride nanoparticles, for example nitride nanocrystals, having a photoluminescence quantum yield of at least 1%, and up to 20% or greater, may be obtained.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: February 3, 2015
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Peter Neil Taylor, Jonathan Heffernan
  • Publication number: 20150014587
    Abstract: The present application provides nitride semiconductor nanoparticles, for example nanocrystals, made from a new composition of matter in the form of a novel compound semiconductor family of the type group II-III-N, for example ZnGaN, ZnInN, ZnInGaN, ZnAlN, ZnAlGaN, ZnAlInN and ZnAlGaInN. This type of compound semiconductor nanocrystal is not previously known in the prior art. The invention also discloses II-N semiconductor nanocrystals, for example ZnN nanocrystals, which are a subgroup of the group II-III-N semiconductor nanocrystals. The composition and size of the new and novel II-III-N compound semiconductor nanocrystals can be controlled in order to tailor their band-gap and light emission properties. Efficient light emission in the ultraviolet-visible-infrared wavelength range is demonstrated.
    Type: Application
    Filed: September 16, 2014
    Publication date: January 15, 2015
    Inventors: Peter Neil TAYLOR, Jonathan HEFFERNAN, Stewart Edward HOOPER, Tim Michael SMEETON
  • Patent number: 8900489
    Abstract: The present application provides nitride semiconductor nanoparticles, for example nanocrystals, made from a new composition of matter in the form of a novel compound semiconductor family of the type group II-III-N, for example ZnGaN, ZnInN, ZnInGaN, ZnAlN, ZnAlGaN, ZnAlInN and ZnAlGaInN. This type of compound semiconductor nanocrystal is not previously known in the prior art. The invention also discloses II-N semiconductor nanocrystals, for example ZnN nanocrystals, which are a subgroup of the group II-III-N semiconductor nanocrystals. The composition and size of the new and novel II-III-N compound semiconductor nanocrystals can be controlled in order to tailor their band-gap and light emission properties. Efficient light emission in the ultraviolet-visible-infrared wavelength range is demonstrated.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: December 2, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Peter Neil Taylor, Jonathan Heffernan, Stewart Edward Hooper, Tim Michael Smeeton
  • Patent number: 8552417
    Abstract: The present application provides a light-emissive nitride nanoparticle, for example a nanocrystal, having a photoluminescence quantum yield of at least 1%. This quantum yield is significantly greater than for prior nitride nanoparticles, which have been only weakly emissive and have had poor control over the size of the nanoparticles produced. The nanoparticle includes at least one capping agent provided on a surface of the nitride crystal and containing an electron-accepting group for passivating nitrogen atoms at the surface of the crystal. The invention also provides non-emissive nitride nanoparticles.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: October 8, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Peter Neil Taylor, Jonathan Heffernan
  • Publication number: 20130062565
    Abstract: A population of light-emissive nitride nanoparticles has a photoluminescence quantum yield of at least 10% and an emission spectrum having a full width at half maximum intensity (FWHM) of less than 100 nm. One suitable method of producing light-emissive nitride nanoparticles comprises a first stage of heating a reaction mixture consisting essentially of nanoparticle precursors in a solvent, the nanoparticle precursors including at least one metal-containing precursor and at least one first nitrogen-containing precursor, and maintaining the reaction mixture at a temperature to seed nanoparticle growth. It further comprises a second stage of adding at least one second nitrogen-containing precursor to the reaction mixture thereby to promote nanoparticle growth.
    Type: Application
    Filed: September 10, 2012
    Publication date: March 14, 2013
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Michael Alan SCHREUDER, Peter Neil TAYLOR
  • Patent number: 8365389
    Abstract: A multifunctional tool which enables a single robot or other manipulator to perform each of the operations to depalletize a palletized load is disclosed. The depalletization can proceed without the need to move the palletized load from one station to another. The multifunctional tool includes a strap cutting mechanism, extendable vacuum arms, and a fork lift mechanism.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: February 5, 2013
    Assignee: Visy R & D Pty Ltd
    Inventor: Neil Taylor
  • Publication number: 20120025139
    Abstract: The present application provides a new composition of matter in the form of a new compound semiconductor family of the type group Zn-(II)-III-N, where III denotes one or more elements in Group III of the periodic table and (II) denotes one or more optional further elements in Group II of the periodic table. Members of this family include for example, ZnGaN, ZnInN, ZnInGaN, ZnAlN, ZnAlGaN, ZnAlInN or ZnAlGaInN. This type of compound semiconductor material is not previously known in the prior art. The composition of the new Zn-(II)-III-N compound semiconductor material can be controlled in order to tailor its band-gap and light emission properties. Efficient light emission in the ultraviolet-visible-infrared wavelength range is demonstrated. The products of this invention are useful as constituents of optoelectronic devices such as solar cells, light emitting diodes, laser diodes and as a light emitting phosphor material for LEDs and emissive EL displays.
    Type: Application
    Filed: July 21, 2011
    Publication date: February 2, 2012
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Peter Neil TAYLOR, Jonathan HEFFERNAN, Stewart Edward HOOPER, Tim Michael SMEETON
  • Publication number: 20120025146
    Abstract: The present application provides nitride semiconductor nanoparticles, for example nanocrystals, made from a new composition of matter in the form of a novel compound semiconductor family of the type group II-III-N, for example ZnGaN, ZnInN, ZnInGaN, ZnAlN, ZnAlGaN, ZnAlInN and ZnAlGaInN. This type of compound semiconductor nanocrystal is not previously known in the prior art. The invention also discloses II-N semiconductor nanocrystals, for example ZnN nanocrystals, which are a subgroup of the group II-III-N semiconductor nanocrystals. The composition and size of the new and novel II-III-N compound semiconductor nanocrystals can be controlled in order to tailor their band-gap and light emission properties. Efficient light emission in the ultraviolet-visible-infrared wavelength range is demonstrated.
    Type: Application
    Filed: July 22, 2011
    Publication date: February 2, 2012
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Peter Neil Taylor, Jonathan Heffernan, Stewart Edward Hooper, Tim Michael Smeeton
  • Publication number: 20120018774
    Abstract: A method of manufacturing a nitride nanoparticle comprises manufacturing the nitride nanostructure from constituents including: a material containing metal, silicon or boron, a material containing nitrogen, and a capping agent having an electron-accepting group for increasing the quantum yield of the nitride nanostructure. Nitride nanoparticles, for example nitride nanocrystals, having a photoluminescence quantum yield of at least 1%, and up to 20% or greater, may be obtained.
    Type: Application
    Filed: January 26, 2010
    Publication date: January 26, 2012
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Peter Neil Taylor, Jonathan Heffernan
  • Publication number: 20110272668
    Abstract: The present application provides a light-emissive nitride nanoparticle, for example a nanocrystal, having a photoluminescence quantum yield of at least 1%. This quantum yield is significantly greater than for prior nitride nanoparticles, which have been only weakly emissive and have had poor control over the size of the nanoparticles produced. The nanoparticle includes at least one capping agent provided on a surface of the nitride crystal and containing an electron-accepting group for passivating nitrogen atoms at the surface of the crystal. The invention also provides non-emissive nitride nanoparticles.
    Type: Application
    Filed: January 26, 2010
    Publication date: November 10, 2011
    Inventors: Peter Neil Taylor, Jonathan Heffernan
  • Patent number: 7959837
    Abstract: A method of compacting material such as but not limited to cathode material for electrochemical cells. A mixture is inserted into a die cavity and the mixture is compacted into a disk shape by the action of a first plunger pressing down on the material and a second plunger pressing upwardly on the material. Flashing of material during ejection of the disk from the die is prevented by fitting a polymeric sleeve around the outer surface of the first plunger. The sleeve flexes to bulge outwardly and does not enter the die cavity during compaction of material and returns to its original position during ejection of the compacted disk from the die. Contact between the disk and sleeve prevents flashing during ejection. Alternatively, a polymeric seal ring is placed around the outer surface of the first plunger. The disk presses against the seal ring preventing flashing of material during ejection.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: June 14, 2011
    Assignee: The Gillette Company
    Inventors: Albert A. Andrews, Robert D. Freeman, Otis Neil Taylor, David Leon Watson, Eric V. Ball
  • Patent number: 7850884
    Abstract: A method of compacting material such as but not limited to cathode material for electrochemical cells. A mixture is inserted into a die cavity and the mixture is compacted into a disk shape by the action of a first plunger pressing down on the material and a second plunger pressing upwardly on the material. Flashing of material during ejection of the disk from the die is prevented by fitting a polymeric sleeve around the outer surface of the first plunger. The sleeve flexes to bulge outwardly and does not enter the die cavity during compaction of material and returns to its original position during ejection of the compacted disk from the die. Contact between the disk and sleeve prevents flashing during ejection. Alternatively, a polymeric seal ring is placed around the outer surface of the first plunger. The disk presses against the seal ring preventing flashing of material during ejection.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: December 14, 2010
    Assignee: The Gillette Company
    Inventors: Albert A. Andrews, Robert D. Freeman, Otis Neil Taylor, David Leon Watson, Eric V. Ball
  • Publication number: 20100252957
    Abstract: A method of compacting material such as but not limited to cathode material for electrochemical cells. A mixture is inserted into a die cavity and the mixture is compacted into a disk shape by the action of a first plunger pressing down on the material and a second plunger pressing upwardly on the material. Flashing of material during ejection of the disk from the die is prevented by fitting a polymeric sleeve around the outer surface of the first plunger. The sleeve flexes to bulge outwardly and does not enter the die cavity during compaction of material and returns to its original position during ejection of the compacted disk from the die. Contact between the disk and sleeve prevents flashing during ejection. Alternatively, a polymeric seal ring is placed around the outer surface of the first plunger. The disk presses against the seal ring preventing flashing of material during ejection.
    Type: Application
    Filed: April 1, 2009
    Publication date: October 7, 2010
    Inventors: Albert A. Andrews, Robert D. Freeman, Otis Neil Taylor, David Leon Watson, Eric V. Ball