Patents by Inventor Nelson Garces

Nelson Garces has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9679766
    Abstract: Disclosed herein is a method of: depositing a patterned mask layer on an N-polar GaN epitaxial layer of a sapphire, silicon, or silicon carbide substrate; depositing an AlN inversion layer on the open areas; removing any remaining mask; and depositing a III-N epitaxial layer to simultaneously produce N-polar material and III-polar material. Also disclosed herein is: depositing an AlN inversion layer on an N-polar bulk III-N substrate and depositing a III-N epitaxial layer to produce III-polar material. Also disclosed herein is: depositing an inversion layer on a III-polar bulk III-N substrate and depositing a III-N epitaxial layer to produce N-polar material. Also disclosed herein is a composition having: a bulk III-N substrate; an inversion layer on portions of the substrate; and a III-N epitaxial layer on the inversion layer. The III-N epitaxial layer is of the opposite polarity of the surface of the substrate.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: June 13, 2017
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Jennifer K. Hite, Francis J. Kub, Charles R. Eddy, Jr., Nelson Garces
  • Publication number: 20160336171
    Abstract: Disclosed herein is a method of: depositing a patterned mask layer on an N-polar GaN epitaxial layer of a sapphire, silicon, or silicon carbide substrate; depositing an AlN inversion layer on the open areas; removing any remaining mask; and depositing a III-N epitaxial layer to simultaneously produce N-polar material and III-polar material. Also disclosed herein is: depositing an AlN inversion layer on an N-polar bulk III-N substrate and depositing a III-N epitaxial layer to produce III-polar material. Also disclosed herein is: depositing an inversion layer on a III-polar bulk III-N substrate and depositing a III-N epitaxial layer to produce N-polar material. Also disclosed herein is a composition having: a bulk III-N substrate; an inversion layer on portions of the substrate; and a III-N epitaxial layer on the inversion layer. The III-N epitaxial layer is of the opposite polarity of the surface of the substrate.
    Type: Application
    Filed: May 20, 2016
    Publication date: November 17, 2016
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jennifer K. Hite, Francis J. Kub, Charles R. Eddy, JR., Nelson Garces
  • Patent number: 9396941
    Abstract: Disclosed herein is a method of: depositing a patterned mask layer on an N-polar GaN epitaxial layer of a sapphire, silicon, or silicon carbide substrate; depositing an AlN inversion layer on the open areas; removing any remaining mask; and depositing a III-N epitaxial layer to simultaneously produce N-polar material and III-polar material. Also disclosed herein is: depositing an AlN inversion layer on an N-polar bulk III-N substrate and depositing a III-N epitaxial layer to produce III-polar material. Also disclosed herein is: depositing an inversion layer on a III-polar bulk III-N substrate and depositing a III-N epitaxial layer to produce N-polar material. Also disclosed herein is a composition having: a bulk III-N substrate; an inversion layer on portions of the substrate; and a III-N epitaxial layer on the inversion layer. The III-N epitaxial layer is of the opposite polarity of the surface of the substrate.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: July 19, 2016
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Jennifer K. Hite, Francis J. Kub, Charles R. Eddy, Jr., Nelson Garces
  • Patent number: 9028919
    Abstract: Processes for preparation of an epitaxial graphene surface to make it suitable for deposition of high-? oxide-based dielectric compounds such as Al2O3, HfO2, TaO5, or TiO2 are provided. A first process combines ex situ wet chemistry conditioning of an epitaxially grown graphene sample with an in situ pulsing sequence in the ALD reactor. A second process combines ex situ dry chemistry conditioning of the epitaxially grown graphene sample with the in situ pulsing sequence.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: May 12, 2015
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Nelson Garces, Virginia D. Wheeler, David Kurt Gaskill, Charles R. Eddy, Jr., Glenn G. Jernigan
  • Patent number: 8920877
    Abstract: Processes for preparation of an epitaxial graphene surface to make it suitable for deposition of high-? oxide-based dielectric compounds such as Al2O3, HfO2, TaO5, or TiO2 are provided. A first process combines ex situ wet chemistry conditioning of an epitaxially grown graphene sample with an in situ pulsing sequence in the ALD reactor. A second process combines ex situ dry chemistry conditioning of the epitaxially grown graphene sample with the in situ pulsing sequence.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: December 30, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Nelson Garces, Virginia D. Wheeler, David Kurt Gaskill, Charles R. Eddy, Jr., Glenn G. Jernigan
  • Publication number: 20140308437
    Abstract: Processes for preparation of an epitaxial graphene surface to make it suitable for deposition of high-? oxide-based dielectric compounds such as Al2O3, HfO2, TaO5, or TiO2 are provided. A first process combines ex situ wet chemistry conditioning of an epitaxially grown graphene sample with an in situ pulsing sequence in the ALD reactor. A second process combines ex situ dry chemistry conditioning of the epitaxially grown graphene sample with the in situ pulsing sequence.
    Type: Application
    Filed: June 26, 2014
    Publication date: October 16, 2014
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Nelson Garces, Virginia D. Wheeler, David Kurt Gaskill, Charles R. Eddy, Jr., Glenn G. Jernigan
  • Publication number: 20130302997
    Abstract: Processes for preparation of an epitaxial graphene surface to make it suitable for deposition of high-? oxide-based dielectric compounds such as Al2O3, HfO2, TaO5, or TiO2 are provided. A first process combines ex situ wet chemistry conditioning of an epitaxially grown graphene sample with an in situ pulsing sequence in the ALD reactor. A second process combines ex situ dry chemistry conditioning of the epitaxially grown graphene sample with the in situ pulsing sequence.
    Type: Application
    Filed: July 1, 2013
    Publication date: November 14, 2013
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Nelson Garces, Virginia D. Wheeler, David Kurt Gaskill, Charles R. Eddy, JR., Glenn G. Jernigan
  • Patent number: 8518491
    Abstract: Processes for preparation of an epitaxial graphene surface to make it suitable for deposition of high-? oxide-based dielectric compounds such as Al2O3, HfO2, TaO5, or TiO2 are provided. A first process combines ex situ wet chemistry conditioning of an epitaxially grown graphene sample with an in situ pulsing sequence in the ALD reactor. A second process combines ex situ dry chemistry conditioning of the epitaxially grown graphene sample with the in situ pulsing sequence.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: August 27, 2013
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Nelson Garces, Virginia D. Wheeler, David Kurt Gaskill, Charles R. Eddy, Jr., Glenn G. Jernigan
  • Publication number: 20130017323
    Abstract: Processes for preparation of an epitaxial graphene surface to make it suitable for deposition of high-? oxide-based dielectric compounds such as Al2O3, HfO2, TaO5, or TiO2 are provided. A first process combines ex situ wet chemistry conditioning of an epitaxially grown graphene sample with an in situ pulsing sequence in the ALD reactor. A second process combines ex situ dry chemistry conditioning of the epitaxially grown graphene sample with the in situ pulsing sequence.
    Type: Application
    Filed: July 14, 2011
    Publication date: January 17, 2013
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Nelson Garces, Virginia D. Wheeler, David Kurt Gaskill, Charles R. Eddy, JR., Glenn G. Jernigan
  • Publication number: 20120068189
    Abstract: Disclosed herein is a method of: depositing a patterned mask layer on an N-polar GaN epitaxial layer of a sapphire, silicon, or silicon carbide substrate; depositing an AlN inversion layer on the open areas; removing any remaining mask; and depositing a III-N epitaxial layer to simultaneously produce N-polar material and III-polar material. Also disclosed herein is: depositing an AlN inversion layer on an N-polar bulk III-N substrate and depositing a III-N epitaxial layer to produce III-polar material. Also disclosed herein is: depositing an inversion layer on a III-polar bulk III-N substrate and depositing a III-N epitaxial layer to produce N-polar material. Also disclosed herein is a composition having: a bulk III-N substrate; an inversion layer on portions of the substrate; and a III-N epitaxial layer on the inversion layer. The III-N epitaxial layer is of the opposite polarity of the surface of the substrate.
    Type: Application
    Filed: September 19, 2011
    Publication date: March 22, 2012
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jennifer K. Hite, Francis J. Kub, Charles R. Eddy, JR., Nelson Garces