Patents by Inventor Newton C. Frateschi

Newton C. Frateschi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7113525
    Abstract: An optical device includes an optical waveguide through which light propagates and a micro-resonator structure including an optical sensor. The micro-resonator is configured to resonate at a wavelength of light that may be transmitted through the optical waveguide. When light at that wavelength is transmitted through the optical waveguide, it resonates in the resonator and is detected by the optical sensor to produce an electrical signal. The optical resonator may be a micro-cylinder, disc or ring resonator and may be coupled to the waveguide via evanescent coupling or leaky-mode coupling. Multiple resonators may be implemented proximate to the waveguide to allow multiple wavelengths to be detected. When the waveguide is coupled to a tunable laser, signals provided by the optical sensor may be used to tune the wavelength of the laser.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: September 26, 2006
    Assignee: T-Newtorks, Inc.
    Inventors: John Kai Andersen, Newton C. Frateschi
  • Patent number: 7016556
    Abstract: An optical device includes an optical waveguide through which light propagates and a micro-resonator structure including an optical sensor. The micro-resonator is configured to resonate at a wavelength of light that may be transmitted through the optical waveguide. When light at that wavelength is transmitted through the optical waveguide, it resonates in the resonator and is detected by the optical sensor to produce an electrical signal. The optical resonator may be a micro-cylinder, disc or ring resonator and may be coupled to the waveguide via evanescent coupling or leaky-mode coupling. Multiple resonators may be implemented proximate to the waveguide to allow multiple wavelengths to be detected. When the waveguide is coupled to a tunable laser, signals provided by the optical sensor may be used to tune the wavelength of the laser.
    Type: Grant
    Filed: June 15, 2004
    Date of Patent: March 21, 2006
    Assignee: T-Networks, Inc.
    Inventors: John Kai Andersen, Newton C. Frateschi
  • Patent number: 6987908
    Abstract: A grating dispersion compensator (GDC), including: a substrate; a dielectric grating layer; a planar waveguide; and a passivation layer. The dielectric grating layer may be formed on the substrate and includes a variation in refractive index. This variation in refractive index defines a grating period. The grating period may vary along the longitudinal axis of the GDC according to a predetermined function. A selected center wavelength and dispersion curve may be created. The chirp of the grating period may be controlled by current, voltage, temperature, or pressure. The planar waveguide is formed on the dielectric grating layer and includes an input/output (I/O) surface normal to the longitudinal axis of the planar waveguide. The passivation layer is formed on the planar waveguide. Alternatively, a GDC may be formed with the dielectric grating layer on top of the planar waveguide rather then beneath it.
    Type: Grant
    Filed: June 11, 2002
    Date of Patent: January 17, 2006
    Assignee: T-Networks, Inc.
    Inventors: Aaron Bond, Ram Jambunathan, Newton C. Frateschi
  • Patent number: 6985644
    Abstract: An optical device includes an optical waveguide through which light propagates and a micro-resonator structure including an optical sensor. The micro-resonator is configured to resonate at a wavelength of light that may be transmitted through the optical waveguide. When light at that wavelength is transmitted through the optical waveguide, it resonates in the resonator and is detected by the optical sensor to produce an electrical signal. The optical resonator may be a micro-cylinder, disc or ring resonator and may be coupled to the waveguide via evanescent coupling or leaky-mode coupling. Multiple resonators may be implemented proximate to the waveguide to allow multiple wavelengths to be detected. When the waveguide is coupled to a tunable laser, signals provided by the optical sensor may be used to tune the wavelength of the laser.
    Type: Grant
    Filed: September 16, 2002
    Date of Patent: January 10, 2006
    Assignee: T-Networks, Inc.
    Inventors: John Kai Andersen, Newton C. Frateschi
  • Patent number: 6967770
    Abstract: An active optical device with reduced axial carrier depletion is disclosed. This active optical device includes a substrate layer; a p-doped active layer coupled to the substrate, a semiconductor layer coupled to the active layer, an electrical contact coupled to the substrate layer, and an electrical contact coupled to the semiconductor layer. The p-doped active layer has a central interaction region and a transverse diffusion region. The transverse diffusion region supplies additional carriers to the central interaction region in response to carrier depletion in the central interaction region caused by the interaction of the carriers with a light beam. Also a method of operation and a method of manufacture for the active optical device is disclosed.
    Type: Grant
    Filed: July 20, 2004
    Date of Patent: November 22, 2005
    Assignee: T-Networks, Inc.
    Inventor: Newton C. Frateschi
  • Patent number: 6891665
    Abstract: An active optical device with reduced axial carrier depletion is disclosed. This active optical device includes a substrate layer; a p-doped active layer coupled to the substrate, a semiconductor layer coupled to the active layer, an electrical contact coupled to the substrate layer, and an electrical contact coupled to the semiconductor layer. The p-doped active layer has a central interaction region and a transverse diffusion region. The transverse diffusion region supplies additional carriers to the central interaction region in response to carrier depletion in the central interaction region caused by the interaction of the carriers with a light beam. Also a method of operation and a method of manufacture for the active optical device is disclosed.
    Type: Grant
    Filed: July 17, 2002
    Date of Patent: May 10, 2005
    Assignee: T-Networks, Inc.
    Inventor: Newton C. Frateschi
  • Patent number: 6856441
    Abstract: A method of tuning an electroabsorption modulator (EAM). A reference average power loss factor for light having a reference peak wavelength that is modulated by the EAM is provided. This loss factor is based on operation of the EAM using a reference bias voltage, a reference temperature, and a reference modulation signal which has a predetermined duty cycle. Input light is coupled into the EAM and modulated using a modulation signal which has the same duty cycle as the reference modulation signal. The input power of the input light and the average output power of light emitted from the EAM are measured. These input and average output powers are used to generate an average power loss factor. The average power loss factor is compared to the reference average power loss factor and the bias voltage and/or the temperature of the EAM are adjusted to reduce differences between these loss factors.
    Type: Grant
    Filed: August 25, 2003
    Date of Patent: February 15, 2005
    Assignee: T-Networks, Inc.
    Inventors: Liyan Zhang, Newton C. Frateschi, Jiaming Zhang, Aaron Bond
  • Patent number: 6844212
    Abstract: A grating dispersion compensator (GDC), including: a substrate; a dielectric grating layer; a planar waveguide; and a passivation layer; is disclosed. The dielectric grating layer may be formed on the substrate and includes a variation in refractive index. This variation in refractive index defines a grating period. The grating period may vary along the longitudinal axis of the GDC according to a predetermined function. A selected center wavelength and dispersion curve may be created. The chirp of the grating period may be controlled by current, voltage, temperature, or pressure. The planar waveguide is formed on the dielectric grating layer and includes an input/output (I/O) surface normal to the longitudinal axis of the planar waveguide. The passivation layer is formed on the planar waveguide. Alternatively, a GDC may be formed with the dielectric grating layer on top of the planar waveguide rather than beneath it.
    Type: Grant
    Filed: May 12, 2004
    Date of Patent: January 18, 2005
    Assignee: T-Networks, Inc.
    Inventors: Aaron Bond, Ram Jambunathan, Newton C. Frateschi
  • Publication number: 20040263953
    Abstract: An active optical device with reduced axial carrier depletion is disclosed. This active optical device includes a substrate layer; a p-doped active layer coupled to the substrate, a semiconductor layer coupled to the active layer, an electrical contact coupled to the substrate layer, and an electrical contact coupled to the semiconductor layer. The p-doped active layer has a central interaction region and a transverse diffusion region. The transverse diffusion region supplies additional carriers to the central interaction region in response to carrier depletion in the central interaction region caused by the interaction of the carriers with a light beam. Also a method of operation and a method of manufacture for the active optical device is disclosed.
    Type: Application
    Filed: July 20, 2004
    Publication date: December 30, 2004
    Inventor: Newton C. Frateschi
  • Publication number: 20040223697
    Abstract: An optical device includes an optical waveguide through which light propagates and a micro-resonator structure including an optical sensor. The micro-resonator is configured to resonate at a wavelength of light that may be transmitted through the optical waveguide. When light at that wavelength is transmitted through the optical waveguide, it resonates in the resonator and is detected by the optical sensor to produce an electrical signal. The optical resonator may be a micro-cylinder, disc or ring resonator and may be coupled to the waveguide via evanescent coupling or leaky-mode coupling. Multiple resonators may be implemented proximate to the waveguide to allow multiple wavelengths to be detected. When the waveguide is coupled to a tunable laser, signals provided by the optical sensor may be used to tune the wavelength of the laser.
    Type: Application
    Filed: June 15, 2004
    Publication date: November 11, 2004
    Inventors: John Kai Andersen, Newton C. Frateschi
  • Publication number: 20040218640
    Abstract: An optical device includes an optical waveguide through which light propagates and a micro-resonator structure including an optical sensor. The micro-resonator is configured to resonate at a wavelength of light that may be transmitted through the optical waveguide. When light at that wavelength is transmitted through the optical waveguide, it resonates in the resonator and is detected by the optical sensor to produce an electrical signal. The optical resonator may be a micro-cylinder, disc or ring resonator and may be coupled to the waveguide via evanescent coupling or leaky-mode coupling. Multiple resonators may be implemented proximate to the waveguide to allow multiple wavelengths to be detected. When the waveguide is coupled to a tunable laser, signals provided by the optical sensor may be used to tune the wavelength of the laser.
    Type: Application
    Filed: May 28, 2004
    Publication date: November 4, 2004
    Inventors: John Kai Andersen, Newton C. Frateschi
  • Publication number: 20040208446
    Abstract: A grating dispersion compensator (GDC), including: a substrate; a dielectric grating layer; a planar waveguide; and a passivation layer; is disclosed. The dielectric grating layer may be formed on the substrate and includes a variation in refractive index. This variation in refractive index defines a grating period. The grating period may vary along the longitudinal axis of the GDC according to a predetermined function. A selected center wavelength and dispersion curve may be created. The chirp of the grating period may be controlled by current, voltage, temperature, or pressure. The planar waveguide is formed on the dielectric grating layer and includes an input/output (I/O) surface normal to the longitudinal axis of the planar waveguide. The passivation layer is formed on the planar waveguide. Alternatively, a GDC may be formed with the dielectric grating layer on top of the planar waveguide rather than beneath it.
    Type: Application
    Filed: May 12, 2004
    Publication date: October 21, 2004
    Inventors: Aaron Bond, Ram Jambunathan, Newton C. Frateschi
  • Publication number: 20040090659
    Abstract: A method of tuning an electroabsorption modulator (EAM). A reference average power loss factor for light having a reference peak wavelength that is modulated by the EAM is provided. This loss factor is based on operation of the EAM using a reference bias voltage, a reference temperature, and a reference modulation signal which has a predetermined duty cycle. Input light is coupled into the EAM and modulated using a modulation signal which has the same duty cycle as the reference modulation signal. The input power of the input light and the average output power of light emitted from the EAM are measured. These input and average output powers are used to generate an average power loss factor. The average power loss factor is compared to the reference average power loss factor and the bias voltage and/or the temperature of the EAM are adjusted to reduce differences between these loss factors.
    Type: Application
    Filed: August 25, 2003
    Publication date: May 13, 2004
    Inventors: Liyan Zhang, Newton C. Frateschi, Jiaming Zhang, Aaron Bond
  • Publication number: 20030202548
    Abstract: An optical device includes an optical waveguide through which light propagates and a micro-resonator structure including an optical sensor. The micro-resonator is configured to resonate at a wavelength of light that may be transmitted through the optical waveguide. When light at that wavelength is transmitted through the optical waveguide, it resonates in the resonator and is detected by the optical sensor to produce an electrical signal. The optical resonator may be a micro-cylinder, disc or ring resonator and may be coupled to the waveguide via evanescent coupling or leaky-mode coupling. Multiple resonators may be implemented proximate to the waveguide to allow multiple wavelengths to be detected. When the waveguide is coupled to a tunable laser, signals provided by the optical sensor may be used to tune the wavelength of the laser.
    Type: Application
    Filed: September 16, 2002
    Publication date: October 30, 2003
    Inventors: John Kai Andersen, Newton C. Frateschi
  • Publication number: 20030087460
    Abstract: An active optical device with reduced axial carrier depletion is disclosed. This active optical device includes a substrate layer; a p-doped active layer coupled to the substrate, a semiconductor layer coupled to the active layer, an electrical contact coupled to the substrate layer, and an electrical contact coupled to the semiconductor layer. The p-doped active layer has a central interaction region and a transverse diffusion region. The transverse diffusion region supplies additional carriers to the central interaction region in response to carrier depletion in the central interaction region caused by the interaction of the carriers with a light beam. Also a method of operation and a method of manufacture for the active optical device is disclosed.
    Type: Application
    Filed: July 17, 2002
    Publication date: May 8, 2003
    Inventor: Newton C. Frateschi