Patents by Inventor Nicholas B. Duck

Nicholas B. Duck has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110263488
    Abstract: Compositions and methods for conferring pesticidal activity to bacteria, plants, plant cells, tissues and seeds are provided. Compositions comprising a coding sequence for pesticidal polypeptides are provided. The coding sequences can be used in DNA constructs or expression cassettes for transformation and expression in plants and bacteria. Compositions also comprise transformed bacteria, plants, plant cells, tissues, and seeds. In particular, isolated pesticidal nucleic acid molecules are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.
    Type: Application
    Filed: June 24, 2011
    Publication date: October 27, 2011
    Applicant: ATHENIX CORP.
    Inventors: Nadine Carozzi, Michael G. Koziel, Nicholas B. Duck, Nalini M. Desai, Rong Guo, Daniel John Tomso, Rebekah Deter, Tracy Hargiss
  • Patent number: 8044261
    Abstract: Proteins are provided herein, including proteins capable of catalyzing the acetylation of glyphosate and other structurally related proteins. Also provided are polynucleotides capable of encoding these proteins, compositions that include one or more of these proteins and/or polynucleotides, recombinant cells and transgenic plants comprising these compounds, diversification methods involving the compounds, and methods of using the compounds. Some of the methods and compounds provided herein can be used to render an organism, such as a plant, resistant to glyphosate.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: October 25, 2011
    Assignees: E. I. du Pont de Nemours, Verdia Inc., Pioneer Hi-Bred International, Inc.
    Inventors: Linda A. Castle, Dan Siehl, Lorraine Giver, Jeremy Minshull, Cristina Ivy, Yong Hong Chen, Phillip A. Patten, Nicholas B. Duck, Rebecca Gorton, Billy Fred McCutchen, Roger Kemble
  • Patent number: 8044266
    Abstract: Compositions and methods for conferring pesticidal activity to bacteria, plants, plant cells, tissues and seeds are provided. Compositions comprising a coding sequence for a delta-endotoxin and delta-endotoxin-associated polypeptides are provided. The coding sequences can be used in DNA constructs or expression cassettes for transformation and expression in plants and bacteria. Compositions also comprise transformed bacteria, plants, plant cells, tissues, and seeds. In particular, isolated delta-endotoxin and delta-endotoxin-associated nucleic acid molecules are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed. In particular, the present invention provides for isolated nucleic acid molecules comprising nucleotide sequences encoding the amino acid sequences shown in SEQ ID NOS:3, 5, and 7, and the nucleotide sequences set forth in SEQ ID NO:1, 2, 4, and 6, as well as variants and fragments thereof.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: October 25, 2011
    Assignee: Athenix Corp.
    Inventors: Nadine Carozzi, Tracy Hargiss, Michael G. Koziel, Nicholas B. Duck, Brian Carr
  • Patent number: 8021857
    Abstract: Novel proteins are provided herein, including proteins capable of catalyzing the acetylation of glyphosate and other structurally related proteins. Also provided are novel polynucleotides capable of encoding these proteins, compositions that include one or more of these novel proteins and/or polynucleotides, recombinant cells and transgenic plants comprising these novel compounds, diversification methods involving the novel compounds, and methods of using the compounds. Some of the novel methods and compounds provided herein can be used to render an organism, such as a plant, resistant to glyphosate.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: September 20, 2011
    Assignees: Pioneer Hi-Bred International, Inc., E.I. du Pont de Nemours, Verdia Inc.
    Inventors: Linda A. Castle, Dan Siehl, Lorraine Giver, Jeremy Minshull, Cristina Ivy, Yong Hong Chen, Phillip A. Patten, Nicholas B. Duck, Rebecca Gorton, Billy Fred McCutchen, Roger Kemble
  • Patent number: 8008547
    Abstract: Proteins are provided herein, including proteins capable of catalyzing the acetylation of glyphosate and other structurally related proteins. Also provided are polynucleotides capable of encoding these proteins, compositions that include one or more of these proteins and/or polynucleotides, recombinant cells and transgenic plants comprising these compounds, diversification methods involving the compounds, and methods of using the compounds. Some of the methods and compounds provided herein can be used to render an organism, such as a plant, resistant to glyphosate.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: August 30, 2011
    Assignees: E.I. duPont de Nemours, Verdia Inc., Pioneer Hi-Bred International Inc,
    Inventors: Linda A. Castle, Dan Siehl, Lorraine Giver, Jeremy Minshull, Cristina Ivy, Yong Hong Chen, Phillip A. Patten, Rebecca Gorton, Nicholas B. Duck, Billy Fred McCutchen, Roger Kemble
  • Patent number: 7999152
    Abstract: Proteins are provided herein, including proteins capable of catalyzing the acetylation of glyphosate and other structurally related proteins. Also provided are polynucleotides capable of encoding these proteins, compositions that include one or more of these proteins and/or polynucleotides, recombinant cells and transgenic plants comprising these compounds, diversification methods involving the compounds, and methods of using the compounds. Some of the methods and compounds provided herein can be used to render an organism, such as a plant, resistant to glyphosate.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: August 16, 2011
    Assignees: Pioneer Hi-Bred International, Inc., Verdia, Inc., E.I. du Pont de Nemours and Company
    Inventors: Linda A. Castle, Dan Siehl, Lorraine Giver, Jeremy Minshull, Cristina Ivy, Yong Hong Chen, Phillip A. Patten, Nicholas B. Duck, Rebecca Gorton, Billy Fred McCutchen, Roger Kemble
  • Patent number: 7998703
    Abstract: Proteins are provided herein, including proteins capable of catalyzing the acetylation of glyphosate and other structurally related proteins. Also provided are polynucleotides capable of encoding these proteins, compositions that include one or more of these proteins and/or polynucleotides, recombinant cells and transgenic plants comprising these compounds, diversification methods involving the compounds, and methods of using the compounds. Some of the methods and compounds provided herein can be used to render an organism, such as a plant, resistant to glyphosate.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: August 16, 2011
    Assignees: Verdia, Inc., Pioneer Hi-Bred International, Inc., E.I. DuPont De Nemours
    Inventors: Linda A. Castle, Dan Siehl, Lorraine Giver, Jeremy Minshull, Cristina Ivy, Yong Hong Chen, Phillip A. Patten, Rebecca Gorton, Nicholas B. Duck, Billy Fred McCutchen, Roger Kemble
  • Publication number: 20110136200
    Abstract: Compositions and methods for conferring herbicide resistance to and improving nitrogen utilization of bacteria, plants, plant cells, tissues and seeds are provided. Compositions comprising a coding sequence for a polypeptide that confers resistance or tolerance to herbicidal glutamine synthetase inhibitors are provided. The coding sequences can be used in DNA constructs or expression cassettes for transformation and expression in plants. Compositions also comprise transformed bacteria, plants, plant cells, tissues, and seeds. In particular, isolated polynucleotides corresponding to herbicidal glutamine synthetase inhibitor-resistant polynucleotides are provided. Additionally, polypeptides corresponding to the polynucleotides are encompassed. In particular, the present invention provides for isolated polynucleotides comprising a variant of SEQ ID NO:1, wherein the variant polynucleotide encodes a polypeptide that is resistant to inhibition by herbicidal glutamine synthetase inhibitor.
    Type: Application
    Filed: February 15, 2011
    Publication date: June 9, 2011
    Applicant: Athenix Corp.
    Inventors: Nicholas B. Duck, Todd K. Hinson, Vadim Beilinson, Laura Cooper Schouten, Daniel John Tomso
  • Publication number: 20110083231
    Abstract: Novel proteins are provided herein, including proteins capable of catalyzing the acetylation of glyphosate and other structurally related proteins. Also provided are novel polynucleotides capable of encoding these proteins, compositions that include one or more of these novel proteins and/or polynucleotides, recombinant cells and transgenic plants comprising these novel compounds, diversification methods involving the novel compounds, and methods of using the compounds. Some of the novel methods and compounds provided herein can be used to render an organism, such as a plant, resistant to glyphosate.
    Type: Application
    Filed: November 23, 2010
    Publication date: April 7, 2011
    Applicants: Verdia Inc., Pioneer Hi-Bred International, Inc., E.I. du PONT de NEMOURS and COMPANY
    Inventors: Linda A. Castle, Dan Siehl, Lorraine Giver, Jeremy Minshull, Cristina Ivy, Yong Hong Chen, Phillip A. Patten, Rebecca Gorton, Nicholas B. Duck
  • Patent number: 7910805
    Abstract: Compositions and methods for conferring herbicide resistance to and improving nitrogen utilization of bacteria, plants, plant cells, tissues and seeds are provided. Compositions comprising a coding sequence for a polypeptide that confers resistance or tolerance to herbicidal glutamine synthetase inhibitors are provided. The coding sequences can be used in DNA constructs or expression cassettes for transformation and expression in plants. Compositions also comprise transformed bacteria, plants, plant cells, tissues, and seeds. In particular, isolated polynucleotides corresponding to herbicidal glutamine synthetase inhibitor-resistant polynucleotides are provided. Additionally, polypeptides corresponding to the polynucleotides are encompassed. In particular, the present invention provides for isolated polynucleotides comprising a variant of SEQ ID NO:1, wherein the variant polynucleotide encodes a polypeptide that is resistant to inhibition by herbicidal glutamine synthetase inhibitor.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: March 22, 2011
    Assignee: Athenix Corp.
    Inventors: Nicholas B. Duck, Todd K. Hinson, Vadim Beilinson, Laura Cooper Schouten, Daniel John Tomso
  • Patent number: 7863503
    Abstract: Novel proteins are provided herein, including proteins capable of catalyzing the acetylation of glyphosate and other structurally related proteins. Also provided are novel polynucleotides capable of encoding these proteins, compositions that include one or more of these novel proteins and/or polynucleotides, recombinant cells and transgenic plants comprising these novel compounds, diversification methods involving the novel compounds, and methods of using the compounds. Some of the novel methods and compounds provided herein can be used to render an organism, such as a plant, resistant to glyphosate.
    Type: Grant
    Filed: March 21, 2008
    Date of Patent: January 4, 2011
    Assignees: Pioneer Hi-Bred International, Inc., E.I. du Pont de Nemours and Co., Verdia, Inc.
    Inventors: Linda A. Castle, Dan Siehl, Lorraine Giver, Jeremy Minshull, Christina Ivy, Yong Hong Chen, Phillip A. Patten, Rebecca Gorton, Nicholas B. Duck, Billy Fred McCutchen, Roger Kemble
  • Publication number: 20100298211
    Abstract: Compositions and methods for conferring pesticidal activity to bacteria, plants, plant cells, tissues and seeds are provided. Compositions comprising a coding sequence for a delta-endotoxin polypeptide are provided. The coding sequences can be used in DNA constructs or expression cassettes for transformation and expression in plants and bacteria. Compositions also comprise transformed bacteria, plants, plant cells, tissues, and seeds. In particular, isolated delta-endotoxin nucleic acid molecules are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed, and antibodies specifically binding to those amino acid sequences. In particular, the present invention provides for isolated nucleic acid molecules comprising nucleotide sequences encoding the amino acid sequence shown in SEQ ID NO:6-11, or the nucleotide sequence set forth in SEQ ID NO:1-5, as well as variants and fragments thereof.
    Type: Application
    Filed: March 11, 2010
    Publication date: November 25, 2010
    Applicant: Athenix Corporation
    Inventors: Nadine Carozzi, Nicholas B. Duck, Michael G. Koziel, Tracy Hargiss, Rebekah Deter, Cheryl L. Peters, Sandra L. Volrath, Daniel J. Tomso
  • Patent number: 7811598
    Abstract: Compositions and methods for conferring pesticidal activity to bacteria, plants, plant cells, tissues and seeds are provided. Compositions comprising a coding sequence for a delta-endotoxin polypeptide are provided. The coding sequences can be used in DNA constructs or expression cassettes for transformation and expression in plants and bacteria. Compositions also comprise transformed bacteria, plants, plant cells, tissues, and seeds. In particular, isolated delta-endotoxin nucleic acid molecules are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed. In particular, the present invention provides for isolated nucleic acid molecules comprising nucleotide sequences encoding the amino acid sequence shown in SEQ ID NO:2, 4, 15, 17, or 19, or the nucleotide sequence set forth in SEQ ID NO:1, 3, 14, 16, or 18, as well as variants and fragments thereof.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: October 12, 2010
    Assignee: Athenix Corp.
    Inventors: Nadine Carozzi, Michael G. Koziel, Tracy Hargiss, Nicholas B. Duck
  • Patent number: 7807881
    Abstract: Compositions and methods for conferring herbicide resistance to plant cells and bacterial cells are provided. The methods comprise transforming the cells with nucleotide sequences encoding herbicide resistance genes. In particular, herbicide resistance is conferred by expression of proteins with homology to decarboxylase enzymes. Compositions comprise transformed plants, plant tissues, and seeds, as well as transformed bacterial cells.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: October 5, 2010
    Assignee: Athenix Corp.
    Inventors: Philip E. Hammer, Todd K. Hinson, Nicholas B. Duck, Michael G. Koziel
  • Patent number: 7803925
    Abstract: Compositions and methods for conferring pesticidal activity to bacteria, plants, plant cells, tissues and seeds are provided. Compositions comprising a coding sequence for a delta-endotoxin polypeptide are provided. The coding sequences can be used in DNA constructs or expression cassettes for transformation and expression in plants and bacteria. Compositions also comprise transformed bacteria, plants, plant cells, tissues, and seeds. In particular, isolated delta-endotoxin nucleic acid molecules are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed. In particular, the present invention provides for isolated nucleic acid molecules comprising nucleotide sequences encoding the amino acid sequence shown in SEQ ID NO:2, 4, 15, 17, or 19, or the nucleotide sequence set forth in SEQ ID NO:1, 3, 14, 16, or 18, as well as variants and fragments thereof.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: September 28, 2010
    Assignee: Athenix Corp.
    Inventors: Nadine Carozzi, Michael G. Koziel, Tracy Hargiss, Nicholas B. Duck, Theodore W. Kahn
  • Patent number: 7803391
    Abstract: Compositions and methods for conferring pesticidal activity to bacteria, plants, plant cells, tissues and seeds are provided. Compositions comprising a coding sequence for a delta-endotoxin polypeptide are provided. The coding sequences can be used in DNA constructs or expression cassettes for transformation and expression in plants and bacteria. Compositions also comprise transformed bacteria, plants, plant cells, tissues, and seeds. In particular, isolated delta-endotoxin nucleic acid molecules are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed. In particular, the present invention provides for isolated nucleic acid molecules comprising nucleotide sequences encoding the amino acid sequence shown in SEQ ID NO:2, 4, 15, 17, or 19, or the nucleotide sequence set forth in SEQ ID NO:1, 3, 14, 16, or 18, as well as variants and fragments thereof.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: September 28, 2010
    Assignee: Athenix Corporation
    Inventors: Nadine Carozzi, Michael G. Koziel, Tracy Hargiss, Nicholas B. Duck
  • Publication number: 20100199371
    Abstract: Novel proteins are provided herein, including proteins capable of catalyzing the acetylation of glyphosate and other structurally related proteins. Also provided are novel polynucleotides capable of encoding these proteins, compositions that include one or more of these novel proteins and/or polynucleotides, recombinant cells and transgenic plants comprising these novel compounds, diversification methods involving the novel compounds, and methods of using the compounds. Some of the novel methods and compounds provided herein can be used to render an organism, such as a plant, resistant to glyphosate.
    Type: Application
    Filed: August 3, 2009
    Publication date: August 5, 2010
    Applicants: Pioneer Hi-Bred International, Inc., Verdia, Inc., E.I. du Pont de Nemours and Company
    Inventors: Linda A. Castle, Dan Siehl, Lorraine Giver, Jeremy Minshull, Cristina Ivy, Yong Hong Chen, Phillip A. Patten, Nicholas B. Duck, Rebecca Gorton, Billy Fred McCutchen, Roger Kemble
  • Publication number: 20100184204
    Abstract: Novel proteins are provided herein, including proteins capable of catalyzing the acetylation of glyphosate and other structurally related proteins. Also provided are novel polynucleotides capable of encoding these proteins, compositions that include one or more of these novel proteins and/or polynucleotides, recombinant cells and transgenic plants comprising these novel compounds, diversification methods involving the novel compounds, and methods of using the compounds. Some of the novel methods and compounds provided herein can be used to render an organism, such as a plant, resistant to glyphosate.
    Type: Application
    Filed: April 1, 2009
    Publication date: July 22, 2010
    Applicants: Verdia, Inc., Pioneer Hi-Bred International, Inc., E.I. Du Pont De Nemours
    Inventors: Linda A. Castle, Dan Sichl, Lorraine Giver, Jeremy Minshull, Cristina Ivy, Yong Hong Chen, Phillip A. Patten, Rebecca Gorton, Nicholas B. Duck, Billy Fred McCutchen, Roger Kemble
  • Publication number: 20100137216
    Abstract: Compositions and methods for conferring pesticidal activity to bacteria, plants, plant cells, tissues and seeds are provided. Compositions comprising a coding sequence for a delta-endotoxin polypeptide are provided. The coding sequences can be used in DNA constructs or expression cassettes for transformation and expression in plants and bacteria. Compositions also comprise transformed bacteria, plants, plant cells, tissues, and seeds. In particular, isolated delta-endotoxin nucleic acid molecules are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed. In particular, the present invention provides for isolated nucleic acid molecules comprising nucleotide sequences encoding the amino acid sequence shown in SEQ ID NOS:2, 11 and 13, or the nucleotide sequences set forth in SEQ ID NOS:1, 10 and 12, as well as variants and fragments thereof.
    Type: Application
    Filed: January 21, 2010
    Publication date: June 3, 2010
    Applicant: ATHENIX CORPORATION
    Inventors: Nadine Carozzi, Tracy Hargiss, Michael G. Koziel, Nicholas B. Duck
  • Publication number: 20100138961
    Abstract: Compositions and methods for conferring pesticidal activity to bacteria, plants, plant cells, tissues and seeds are provided. Compositions comprising a coding sequence for a delta-endotoxin polypeptide are provided. The coding sequences can be used in DNA constructs or expression cassettes for transformation and expression in plants and bacteria. Compositions also comprise transformed bacteria, plants, plant cells, tissues, and seeds. In particular, isolated delta-endotoxin nucleic acid molecules are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed. In particular, the present invention provides for isolated nucleic acid molecules comprising nucleotide sequences encoding the amino acid sequence shown in SEQ ID NO:2, or the nucleotide sequence set forth in SEQ ID NO:1, as well as variants thereof.
    Type: Application
    Filed: February 7, 2010
    Publication date: June 3, 2010
    Applicant: Athenix Corporation
    Inventors: Nadine Carozzi, Tracy Hargiss, Michael G. Koziel, Nicholas B. Duck, Brian Carr