Patents by Inventor Nicholas C. Hillman

Nicholas C. Hillman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7116244
    Abstract: Transmitted magnetic field signals useable for locating an underground object, and methods and systems for generating the same. The magnetic field signal has desired spectral characteristics. More specifically, the transmitted magnetic field signal includes a carrier component useable for locating an underground object. The carrier component has a carrier component frequency substantially equal to an integer multiple of 300 Hz. This guarantees that the carrier component frequency is substantially equal to an integer multiple of both 50 Hz and 60 Hz. Such a carrier component allows use of maximum information sidebands in environments that often include harmonically derived interference signals at regular 50 Hz (±0.1 Hz) or 60 Hz (±0.1 Hz) intervals caused by power lines. The transmitted magnetic field signal may also include at least one information sideband including sideband energy.
    Type: Grant
    Filed: August 1, 2001
    Date of Patent: October 3, 2006
    Assignee: Radiodetection Limited
    Inventors: Richard W. Fling, Nicholas C. Hillman, Alasdair McPhee, Luigi Lanfranchi
  • Patent number: 6825775
    Abstract: Method and systems for reducing effects of magnetic field interference that may interfere with a magnetic field signal generated at or near an underground object, where the magnetic field signal is used to monitor the location of the underground object. At least two different moving averages of a plurality of samples that are representative of a detected magnetic field signal strength are produce. Each of the different moving averages is a moving average of a different number of the plurality of samples. A respective quality metric (e.g., variance) is then determined for each of the different moving average. One of the moving averages is selected based on the determined quality metrics. Further signal processing is then performed using the selected moving average. For example, the selected moving average is used to monitor the location of the object.
    Type: Grant
    Filed: August 1, 2001
    Date of Patent: November 30, 2004
    Assignee: Radiodetection Limited
    Inventors: Richard W. Fling, Nicholas C. Hillman
  • Publication number: 20030058108
    Abstract: Transmitted magnetic field signals useable for locating an underground object, and methods and systems for generating the same. The magnetic field signal has desired spectral characteristics. More specifically, the transmitted magnetic field signal includes a carrier component useable for locating an underground object. The carrier component has a carrier component frequency substantially equal to an integer multiple of 300 Hz. This guarantees that the carrier component frequency is substantially equal to an integer multiple of both 50 Hz and 60 Hz. Such a carrier component allows use of maximum information sidebands in environments that often include harmonically derived interference signals at regular 50 Hz (±0.1 Hz) or 60 Hz (±0.1 Hz) intervals caused by power lines. The transmitted magnetic field signal may also include at least one information sideband including sideband energy.
    Type: Application
    Filed: August 1, 2001
    Publication date: March 27, 2003
    Applicant: Radiodetection Limited
    Inventors: Richard W. Fling, Nicholas C. Hillman, Alasdair McPhee, Luigi Lanfranchi
  • Publication number: 20030058126
    Abstract: Method and systems for reducing effects of magnetic field interference that may interfere with a magnetic field signal generated at or near an underground object, where the magnetic field signal is used to monitor the location of the underground object. At least two different moving averages of a plurality of samples that are representative of a detected magnetic field signal strength are produce. Each of the different moving averages is a moving average of a different number of the plurality of samples. A respective quality metric (e.g., variance) is then determined for each of the different moving average. One of the moving averages is selected based on the determined quality metrics. Further signal processing is then performed using the selected moving average. For example, the selected moving average is used to monitor the location of the object.
    Type: Application
    Filed: August 1, 2001
    Publication date: March 27, 2003
    Applicant: Radiodetection Limited
    Inventors: Richard W. Fling, Nicholas C. Hillman