Patents by Inventor Nicholas Edward Gillian

Nicholas Edward Gillian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11906619
    Abstract: Techniques and apparatuses are described that implement a smart-device-based radar system capable of detecting user gestures in the presence of saturation. In particular, a radar system employs machine learning to compensate for distortions resulting from saturation. This enables gesture recognition to be performed while the radar system's receiver is saturated. As such, the radar system can forgo integrating an automatic gain control circuit to prevent the receiver from becoming saturated. Furthermore, the radar system can operate with higher gains to increasing sensitivity without adding additional antennas. By using machine learning, the radar system's dynamic range increases, which enables the radar system to detect a variety of different types of gestures having small or large radar cross sections, and performed at various distances from the radar system.
    Type: Grant
    Filed: February 28, 2023
    Date of Patent: February 20, 2024
    Assignee: Google LLC
    Inventors: Changzhan Gu, Jaime Lien, Nicholas Edward Gillian, Jian Wang
  • Patent number: 11698438
    Abstract: Various embodiments wirelessly detect micro gestures using multiple antenna of a gesture sensor device. At times, the gesture sensor device transmits multiple outgoing radio frequency (RF) signals, each outgoing RF signal transmitted via a respective antenna of the gesture sensor device. The outgoing RF signals are configured to help capture information that can be used to identify micro-gestures performed by a hand. The gesture sensor device captures incoming RF signals generated by the outgoing RF signals reflecting off of the hand, and then analyzes the incoming RF signals to identify the micro-gesture.
    Type: Grant
    Filed: September 28, 2021
    Date of Patent: July 11, 2023
    Assignee: Google LLC
    Inventors: Jaime Lien, Nicholas Edward Gillian, Ivan Poupyrev
  • Patent number: 11698439
    Abstract: Various embodiments wirelessly detect micro gestures using multiple antenna of a gesture sensor device. At times, the gesture sensor device transmits multiple outgoing radio frequency (RF) signals, each outgoing RF signal transmitted via a respective antenna of the gesture sensor device. The outgoing RF signals are configured to help capture information that can be used to identify micro-gestures performed by a hand. The gesture sensor device captures incoming RF signals generated by the outgoing RF signals reflecting off of the hand, and then analyzes the incoming RF signals to identify the micro-gesture.
    Type: Grant
    Filed: October 13, 2021
    Date of Patent: July 11, 2023
    Assignee: Google LLC
    Inventors: Jaime Lien, Nicholas Edward Gillian, Ivan Poupyrev
  • Patent number: 11693092
    Abstract: Various embodiments wirelessly detect micro gestures using multiple antenna of a gesture sensor device. At times, the gesture sensor device transmits multiple outgoing radio frequency (RF) signals, each outgoing RF signal transmitted via a respective antenna of the gesture sensor device. The outgoing RF signals are configured to help capture information that can be used to identify micro-gestures performed by a hand. The gesture sensor device captures incoming RF signals generated by the outgoing RF signals reflecting off of the hand, and then analyzes the incoming RF signals to identify the micro-gesture.
    Type: Grant
    Filed: November 10, 2021
    Date of Patent: July 4, 2023
    Assignee: Google LLC
    Inventors: Jaime Lien, Nicholas Edward Gillian, Ivan Poupyrev
  • Publication number: 20230204754
    Abstract: Techniques and apparatuses are described that implement a smart-device-based radar system capable of detecting user gestures in the presence of saturation. In particular, a radar system employs machine learning to compensate for distortions resulting from saturation. This enables gesture recognition to be performed while the radar system's receiver is saturated. As such, the radar system can forgo integrating an automatic gain control circuit to prevent the receiver from becoming saturated. Furthermore, the radar system can operate with higher gains to increasing sensitivity without adding additional antennas. By using machine learning, the radar system's dynamic range increases, which enables the radar system to detect a variety of different types of gestures having small or large radar cross sections, and performed at various distances from the radar system.
    Type: Application
    Filed: February 28, 2023
    Publication date: June 29, 2023
    Applicant: Google LLC
    Inventors: Changzhan Gu, Jaime Lien, Nicholas Edward Gillian, Jian Wang
  • Patent number: 11592547
    Abstract: Techniques and apparatuses are described that implement a smart-device-based radar system capable of detecting user gestures in the presence of saturation. In particular, a radar system 104 employs machine learning to compensate for distortions resulting from saturation. This enables gesture recognition to be performed while the radar system 104's receiver 304 is saturated. As such, the radar system 104 can forgo integrating an automatic gain control circuit to prevent the receiver 304 from becoming saturated. Furthermore, the radar system 104 can operate with higher gains to increasing sensitivity without adding additional antennas. By using machine learning, the radar system 104's dynamic range increases, which enables the radar system 104 to detect a variety of different types of gestures having small or large radar cross sections, and performed at various distances from the radar system 104.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: February 28, 2023
    Assignee: Google LLC
    Inventors: Changzhan Gu, Jaime Lien, Nicholas Edward Gillian, Jian Wang
  • Patent number: 11573311
    Abstract: Techniques and apparatuses are described that implement a smart-device-based radar system capable of performing angular estimation using machine learning. In particular, a radar system 102 includes an angle-estimation module 504 that employs machine learning to estimate an angular position of one or more objects (e.g., users). By analyzing an irregular shape of the radar system 102's spatial response across a wide field of view, the angle-estimation module 504 can resolve angular ambiguities that may be present based on the angle to the object or based on a design of the radar system 102 to correctly identify the angular position of the object. Using machine-learning techniques, the radar system 102 can achieve a high probability of detection and a low false-alarm rate for a variety of different antenna element spacings and frequencies.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: February 7, 2023
    Assignee: Google LLC
    Inventors: Nicholas Edward Gillian, Michal Matuszak, Octavio Ponce Madrigal, Jaime Lien, Patrick M. Amihood, Ivan Poupyrev
  • Publication number: 20230008681
    Abstract: Techniques and apparatuses are described that implement a smart-device-based radar system capable of detecting a frame-of-reference change. In particular, a radar system includes a frame-of-reference machine-learned module trained to recognize whether or not the radar system's frame of reference changes. The frame-of-reference machine-learned module analyzes complex radar data generated from at least one chirp of a reflected radar signal to analyze a relative motion of at least one object over time. By analyzing the complex radar data directly using machine learning, the radar system can operate as a motion sensor without relying on non-radar-based sensors, such as gyroscopes, inertial sensors, or accelerometers. With knowledge of whether the frame-of-reference is stationary or moving, the radar system can determine whether or not a gesture is likely to occur and, in some cases, compensate for the relative motion of the radar system itself.
    Type: Application
    Filed: September 15, 2022
    Publication date: January 12, 2023
    Applicant: Google LLC
    Inventor: Nicholas Edward Gillian
  • Patent number: 11481040
    Abstract: Various embodiments dynamically learn user-customizable input gestures. A user can transition a radar-based gesture detection system into a gesture-learning mode. In turn, the radar-based gesture detection system emits a radar field configured to detect a gesture new to the radar-based gesture detection system. The radar-based gesture detection system receives incoming radio frequency (RF) signals generated by the outgoing RF signal reflecting off the gesture, and analyzes the incoming RF signals to learn one or more identifying characteristics about the gesture. Upon learning the identifying characteristics, the radar-based gesture detection system reconfigures a corresponding input identification system to detect the gesture when the one or more identifying characteristics are next identified, and transitions out of the gesture-learning mode.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: October 25, 2022
    Assignee: Google LLC
    Inventors: Nicholas Edward Gillian, Jaime Lien, Patrick M. Amihood, Ivan Poupyrev
  • Publication number: 20220326367
    Abstract: Techniques and apparatuses are described that implement a smart-device-based radar system capable of performing gesture recognition using a space time neural network. The space time neural network employs machine learning to recognize a user's gesture based on complex radar data. The space time neural network is implemented using a multi-stage machine-learning architecture, which enables the radar system to conserve power and recognize the user's gesture in real time (e.g., as the gesture is performed). The space time neural network is also adaptable and can be expanded to recognize multiple types of gestures, such as a swipe gesture and a reach gesture, without significantly increasing size, computational requirements, or latency.
    Type: Application
    Filed: October 20, 2020
    Publication date: October 13, 2022
    Applicant: Google LLC
    Inventors: Michal Matuszak, Abel Seleshi Mengistu, Nicholas Edward Gillian, Abhijit Aroon Shah
  • Patent number: 11460538
    Abstract: Techniques and apparatuses are described that implement a smart-device-based radar system capable of detecting a frame-of-reference change. In particular, a radar system includes a frame-of-reference machine-learned module trained to recognize whether or not the radar system's frame of reference changes. The frame-of-reference machine-learned module analyzes complex radar data generated from at least one chirp of a reflected radar signal to analyze a relative motion of at least one object over time. By analyzing the complex radar data directly using machine learning, the radar system can operate as a motion sensor without relying on non-radar-based sensors, such as gyroscopes, inertial sensors, or accelerometers. With knowledge of whether the frame-of-reference is stationary or moving, the radar system can determine whether or not a gesture is likely to occur and, in some cases, compensate for the relative motion of the radar system itself.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: October 4, 2022
    Assignee: Google LLC
    Inventor: Nicholas Edward Gillian
  • Publication number: 20220066568
    Abstract: Various embodiments wirelessly detect micro gestures using multiple antenna of a gesture sensor device. At times, the gesture sensor device transmits multiple outgoing radio frequency (RF) signals, each outgoing RF signal transmitted via a respective antenna of the gesture sensor device. The outgoing RF signals are configured to help capture information that can be used to identify micro-gestures performed by a hand. The gesture sensor device captures incoming RF signals generated by the outgoing RF signals reflecting off of the hand, and then analyzes the incoming RF signals to identify the micro-gesture.
    Type: Application
    Filed: November 10, 2021
    Publication date: March 3, 2022
    Applicant: Google LLC
    Inventors: Jaime Lien, Nicholas Edward Gillian, Ivan Poupyrev
  • Publication number: 20220066567
    Abstract: Various embodiments wirelessly detect micro gestures using multiple antenna of a gesture sensor device. At times, the gesture sensor device transmits multiple outgoing radio frequency (RF) signals, each outgoing RF signal transmitted via a respective antenna of the gesture sensor device. The outgoing RF signals are configured to help capture information that can be used to identify micro-gestures performed by a hand. The gesture sensor device captures incoming RF signals generated by the outgoing RF signals reflecting off of the hand, and then analyzes the incoming RF signals to identify the micro-gesture.
    Type: Application
    Filed: October 13, 2021
    Publication date: March 3, 2022
    Applicant: Google LLC
    Inventors: Jaime Lien, Nicholas Edward Gillian, Ivan Poupyrev
  • Publication number: 20220019291
    Abstract: Various embodiments wirelessly detect micro gestures using multiple antenna of a gesture sensor device. At times, the gesture sensor device transmits multiple outgoing radio frequency (RF) signals, each outgoing RF signal transmitted via a respective antenna of the gesture sensor device. The outgoing RF signals are configured to help capture information that can be used to identify micro-gestures performed by a hand. The gesture sensor device captures incoming RF signals generated by the outgoing RF signals reflecting off of the hand, and then analyzes the incoming RF signals to identify the micro-gesture.
    Type: Application
    Filed: September 28, 2021
    Publication date: January 20, 2022
    Applicant: Google LLC
    Inventors: Jaime Lien, Nicholas Edward Gillian, Ivan Poupyrev
  • Publication number: 20210365124
    Abstract: This document describes apparatuses and techniques for radar-enabled sensor fusion. In some aspects, a radar field is provided and reflection signals that correspond to a target in the radar field are received. The reflection signals are transformed to provide radar data, from which a radar feature indicating a physical characteristic of the target is extracted. Based on the radar features, a sensor is activated to provide supplemental sensor data associated with the physical characteristic. The radar feature is then augmented with the supplemental sensor data to enhance the radar feature, such as by increasing an accuracy or resolution of the radar feature. By so doing, performance of sensor-based applications, which rely on the enhanced radar features, can be improved.
    Type: Application
    Filed: August 4, 2021
    Publication date: November 25, 2021
    Applicant: Google LLC
    Inventors: Nicholas Edward Gillian, Carsten C. Schwesig, Jaime Lien, Patrick M. Amihood, Ivan Poupyrev
  • Patent number: 11175743
    Abstract: Various embodiments wirelessly detect micro gestures using multiple antenna of a gesture sensor device. At times, the gesture sensor device transmits multiple outgoing radio frequency (RF) signals, each outgoing RF signal transmitted via a respective antenna of the gesture sensor device. The outgoing RF signals are configured to help capture information that can be used to identify micro-gestures performed by a hand. The gesture sensor device captures incoming RF signals generated by the outgoing RF signals reflecting off of the hand, and then analyzes the incoming RF signals to identify the micro-gesture.
    Type: Grant
    Filed: August 27, 2020
    Date of Patent: November 16, 2021
    Assignee: Google LLC
    Inventors: Jaime Lien, Nicholas Edward Gillian, Ivan Poupyrev
  • Publication number: 20210326642
    Abstract: Various embodiments dynamically learn user-customizable input gestures. A user can transition a radar-based gesture detection system into a gesture-learning mode. In turn, the radar-based gesture detection system emits a radar field configured to detect a gesture new to the radar-based gesture detection system. The radar-based gesture detection system receives incoming radio frequency (RF) signals generated by the outgoing RF signal reflecting off the gesture, and analyzes the incoming RF signals to learn one or more identifying characteristics about the gesture. Upon learning the identifying characteristics, the radar-based gesture detection system reconfigures a corresponding input identification system to detect the gesture when the one or more identifying characteristics are next identified, and transitions out of the gesture-learning mode.
    Type: Application
    Filed: June 29, 2021
    Publication date: October 21, 2021
    Applicant: Google LLC
    Inventors: Nicholas Edward Gillian, Jaime Lien, Patrick M. Amihood, Ivan Poupyrev
  • Patent number: 11132065
    Abstract: This document describes apparatuses and techniques for radar-enabled sensor fusion. In some aspects, a radar field is provided and reflection signals that correspond to a target in the radar field are received. The reflection signals are transformed to provide radar data, from which a radar feature indicating a physical characteristic of the target is extracted. Based on the radar features, a sensor is activated to provide supplemental sensor data associated with the physical characteristic. The radar feature is then augmented with the supplemental sensor data to enhance the radar feature, such as by increasing an accuracy or resolution of the radar feature. By so doing, performance of sensor-based applications, which rely on the enhanced radar features, can be improved.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: September 28, 2021
    Assignee: Google LLC
    Inventors: Nicholas Edward Gillian, Carsten C. Schwesig, Jaime Lien, Patrick M. Amihood, Ivan Poupyrev
  • Patent number: 11080556
    Abstract: Various embodiments dynamically learn user-customizable input gestures. A user can transition a radar-based gesture detection system into a gesture-learning mode. In turn, the radar-based gesture detection system emits a radar field configured to detect a gesture new to the radar-based gesture detection system. The radar-based gesture detection system receives incoming radio frequency (RF) signals generated by the outgoing RF signal reflecting off the gesture, and analyzes the incoming RF signals to learn one or more identifying characteristics about the gesture. Upon learning the identifying characteristics, the radar-based gesture detection system reconfigures a corresponding input identification system to detect the gesture when the one or more identifying characteristics are next identified, and transitions out of the gesture-learning mode.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: August 3, 2021
    Assignee: Google LLC
    Inventors: Nicholas Edward Gillian, Jaime Lien, Patrick M. Amihood, Ivan Poupyrev
  • Publication number: 20210156957
    Abstract: Techniques and apparatuses are described that implement a smart-device-based radar system capable of detecting a frame-of-reference change. In particular, a radar system includes a frame-of-reference machine-learned module trained to recognize whether or not the radar system's frame of reference changes. The frame-of-reference machine-learned module analyzes complex radar data generated from at least one chirp of a reflected radar signal to analyze a relative motion of at least one object over time. By analyzing the complex radar data directly using machine learning, the radar system can operate as a motion sensor without relying on non-radar-based sensors, such as gyroscopes, inertial sensors, or accelerometers. With knowledge of whether the frame-of-reference is stationary or moving, the radar system can determine whether or not a gesture is likely to occur and, in some cases, compensate for the relative motion of the radar system itself.
    Type: Application
    Filed: June 24, 2020
    Publication date: May 27, 2021
    Applicant: Google LLC
    Inventor: Nicholas Edward Gillian