Patents by Inventor Nicholas Edward OSEPOWICZ

Nicholas Edward OSEPOWICZ has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230010497
    Abstract: A fuel cell system includes a fuel cell configured to produce electrical power by a chemical reaction of a flow of fuel and a flow of oxygen or air with an electrolyte and a cooling system configured to remove thermal energy from the fuel cell via a flow of coolant through the fuel cell. The fuel cell system includes one or more conductivity sensors configured to measure a change in conductivity of the coolant flow. A method of operating a fuel cell system includes producing electrical power at a fuel cell by a chemical reaction of a flow of fuel and a flow of air with an electrolyte, urging a flow of coolant through the fuel cell to remove thermal energy and ions from the fuel cell, and measuring a conductivity of the flow of coolant via one or more conductivity sensors.
    Type: Application
    Filed: July 12, 2021
    Publication date: January 12, 2023
    Inventors: Eric A. Nelson, Eric A. Rohrbach, Nicholas Edward Osepowicz, Adam Hathaway
  • Patent number: 11539058
    Abstract: A fuel cell system includes a fuel cell configured to produce electrical power by a chemical reaction of a flow of fuel and a flow of oxygen or air with an electrolyte and a cooling system configured to remove thermal energy from the fuel cell via a flow of coolant through the fuel cell. The fuel cell system includes one or more conductivity sensors configured to measure a change in conductivity of the coolant flow. A method of operating a fuel cell system includes producing electrical power at a fuel cell by a chemical reaction of a flow of fuel and a flow of air with an electrolyte, urging a flow of coolant through the fuel cell to remove thermal energy and ions from the fuel cell, and measuring a conductivity of the flow of coolant via one or more conductivity sensors.
    Type: Grant
    Filed: July 12, 2021
    Date of Patent: December 27, 2022
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventors: Eric A. Nelson, Eric A. Rohrbach, Nicholas Edward Osepowicz, Adam Hathaway
  • Patent number: 10991957
    Abstract: An illustrative example fuel cell assembly includes a plurality of cells respectively including at least an electrolyte layer, an anode flow plate on one side of the electrolyte layer, and a cathode flow plate on an opposite side of the electrolyte layer. At least one cooler is situated adjacent a first one of the cells. The cooler is closer to that first one of the cells than it is to a second one of the cells. The cathode flow plates respectively include a plurality of flow channels and the anode flow plates respectively include a plurality of flow channels. The anode flow plates respectively include some of the flow channels in a condensation zone of the fuel cell assembly. The flow channels of the anode flow plate in the condensation zone of the first one of the cells have a first flow capacity. The flow channels of the anode flow plate of the second one of the cells that are in the condensation zone have a second flow capacity. The second flow capacity is greater than the first flow capacity.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: April 27, 2021
    Assignee: DOOSAN FUEL CELL AMERICA, INC.
    Inventors: Ke Gong, Nicholas Edward Osepowicz, Eric Livaich, Anish Desouza, Pat Brown
  • Publication number: 20190165386
    Abstract: An illustrative example fuel cell assembly includes a plurality of cells respectively including at least an electrolyte layer, an anode flow plate on one side of the electrolyte layer, and a cathode flow plate on an opposite side of the electrolyte layer. At least one cooler is situated adjacent a first one of the cells. The cooler is closer to that first one of the cells than it is to a second one of the cells. The cathode flow plates respectively include a plurality of flow channels and the anode flow plates respectively include a plurality of flow channels. The anode flow plates respectively include some of the flow channels in a condensation zone of the fuel cell assembly. The flow channels of the anode flow plate in the condensation zone of the first one of the cells have a first flow capacity. The flow channels of the anode flow plate of the second one of the cells that are in the condensation zone have a second flow capacity. The second flow capacity is greater than the first flow capacity.
    Type: Application
    Filed: November 30, 2017
    Publication date: May 30, 2019
    Inventors: Ke GONG, Nicholas Edward OSEPOWICZ, Eric LIVAICH, Anish DESOUZA, Pat BROWN
  • Patent number: 10003090
    Abstract: According to an example embodiment, a method of making a fuel cell component includes permeating at least a portion of a component layer with a polymer. The portion of the component layer is adjacent an edge of the component layer. Some of the polymer is allowed to extend beyond the edge to thereby establish a flap beyond the edge of the component layer. A fuel cell component includes a component layer having a portion adjacent an edge of the layer that is impregnated with a polymer material and a flap of the polymer material extending beyond the edge.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: June 19, 2018
    Assignee: DOOSAN FUEL CELL AMERICA, INC.
    Inventors: Nicholas Edward Osepowicz, Manish Khandelwal, Sridhar V. Kanuri
  • Patent number: 10003091
    Abstract: According to an example embodiment, a method of making a phosphoric acid fuel cell component includes situating at least one polymer film layer against a permeable component layer. The polymer film layer comprises a polymer that is chemically resistant to phosphoric acid. The polymer film layer is melted. The permeable component layer is impregnated with the melted polymer to thereby establish a region on the component layer that is impermeable to phosphoric acid. The impregnated region also provides a seal against reactant leakage from the component.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: June 19, 2018
    Assignee: DOOSAN FUEL CELL AMERICA, INC.
    Inventors: Nicholas Edward Osepowicz, Manish Khandelwal
  • Patent number: 9742017
    Abstract: The fuel cell (100) includes an oxidant flow plate (212), an adjacent cathode substrate layer (216) having a cathode catalyst (222), a matrix (224) for retaining a liquid electrolyte (230), wherein the matrix (224) is secured adjacent and between the cathode catalyst (222) and an anode catalyst (232). A first anode substrate (102) is secured adjacent the anode catalyst (232), and at least a second duplicate anode substrate layer (108) is secured adjacent the first anode substrate layer (102) for providing greater pore volume for storage of the liquid electrolyte (230) and to limit obstruction of the pore volume of the anode substrates (102, 108). The duplicate anode substrate layer (108) may be partially filled with the liquid electrolyte (230) at the beginning of life of the fuel cell (100).
    Type: Grant
    Filed: April 2, 2013
    Date of Patent: August 22, 2017
    Assignee: DOOSAN FUEL CELL AMERICA, INC.
    Inventors: Manish Khandelwal, Nicholas Edward Osepowicz
  • Publication number: 20160043418
    Abstract: The fuel cell (100) includes an oxidant flow plate (212), an adjacent cathode substrate layer (216) having a cathode catalyst (222), a matrix (224) for retaining a liquid electrolyte (230), wherein the matrix (224) is secured adjacent and between the cathode catalyst (222) and an anode catalyst (232). A first anode substrate (102) is secured adjacent the anode catalyst (232), and at least a second duplicate anode substrate layer (108) is secured adjacent the first anode substrate layer (102) for providing greater pore volume for storage of the liquid electrolyte (230) and to limit obstruction of the pore volume of the anode substrates (102, 108). The duplicate anode substrate layer (108) may be partially filled with the liquid electrolyte (230) at the beginning of life of the fuel cell (100).
    Type: Application
    Filed: April 2, 2013
    Publication date: February 11, 2016
    Inventors: Manish KHANDELWAL, Nicholas Edward OSEPOWICZ
  • Publication number: 20150380747
    Abstract: According to an example embodiment, a method of making a phosphoric acid fuel cell component includes situating at least one polymer film layer against a permeable component layer. The polymer film layer comprises a polymer that is chemically resistant to phosphoric acid. The polymer film layer is melted. The permeable component layer is impregnated with the melted polymer to thereby establish a region on the component layer that is impermeable to phosphoric acid. The impregnated region also provides a seal against reactant leakage from the component.
    Type: Application
    Filed: February 19, 2013
    Publication date: December 31, 2015
    Inventors: Nicholas Edward OSEPOWICZ, Manish KHANDELWAL
  • Publication number: 20150372323
    Abstract: According to an example embodiment, a method of making a fuel cell component includes permeating at least a portion of a component layer with a polymer. The portion of the component layer is adjacent an edge of the component layer. Some of the polymer is allowed to extend beyond the edge to thereby establish a flap beyond the edge of the component layer. A fuel cell component includes a component layer having a portion adjacent an edge of the layer that is impregnated with a polymer material and a flap of the polymer material extending beyond the edge.
    Type: Application
    Filed: February 19, 2013
    Publication date: December 24, 2015
    Applicant: Doosan Fuel Cell America, Inc.
    Inventors: Nicholas Edward OSEPOWICZ, Manish KHANDELWAL, Sridhar V. KANURI