Patents by Inventor Nicholas Frigo

Nicholas Frigo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10341031
    Abstract: A communication system includes an optical receiver that receives a modulated optical signal and converts same back to electrical form by a photodiode. The photodiode includes an optical input and a dc bias input, and outputs a photocurrent. The optical communication system includes a photodiode linear operation point feedback loop communicating with the photodiode based on an intermodulation distortion contour plot corresponding to the photodiode. The intermodulation distortion contour plot includes a plurality of linear operation points for the photodiode. The photodiode linear operation point feedback loop operates the photodiode at a respective operation point of the plurality of linear operation points.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: July 2, 2019
    Inventors: Meredith N. Hutchinson, Nicholas Frigo, Caitlin R. S Williams
  • Publication number: 20180294890
    Abstract: A communication system includes an optical receiver that receives a modulated optical signal and converts same back to electrical form by a photodiode. The photodiode includes an optical input and a dc bias input, and outputs a photocurrent. The optical communication system includes a photodiode linear operation point feedback loop communicating with the photodiode based on an intermodulation distortion contour plot corresponding to the photodiode. The intermodulation distortion contour plot includes a plurality of linear operation points for the photodiode. The photodiode linear operation point feedback loop operates the photodiode at a respective operation point of the plurality of linear operation points.
    Type: Application
    Filed: April 10, 2018
    Publication date: October 11, 2018
    Inventors: Meredith N. Hutchinson, Nicholas Frigo, Caitlin R. S Williams
  • Patent number: 9768876
    Abstract: A method of suppressing polarization-dependent loss in a signal. A constant-intensity, analog, optical signal with modulating polarization is transmitted through an optical communications link. The constant-intensity, analog, optical signal with modulating polarization includes an analog radio frequency signal impressed upon a polarization-modulated, laser signal. A polarization-dependent loss of the communications link is determined, the polarization-dependent loss inducing an induced phase shift in the constant-intensity, analog, optical signal with modulating polarization. The constant-intensity, analog, optical signal with modulating polarization is re-oriented using a polarization transformer so as to suppress the induced phase shift.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: September 19, 2017
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Meredith N. Hutchinson, Nicholas Frigo, Vincent J. Urick
  • Patent number: 7587142
    Abstract: A method and system for estimating a fraction of an optical transmission system's transmission window that is compliant with the system's polarization mode dispersion (PMD) outage specifications, the optical transmission system including Ns optical fiber segments. The method comprises the steps of: propagating a plurality of optical signals through the Ns optical fiber segments; monitoring the differential group delay (DGD) for each optical signal over time; computing a time average and variance of the monitored DGD for each optical signal; computing statistics of the time averages and variances of the monitored DGD for each optical signal; determining the number of effective PMD sections and effective hinges in the system from the statistics; and determining the size of a PMD capacity compliant fraction for a specified outage probability.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: September 8, 2009
    Assignee: AT&T Intellectual Property II, LP
    Inventors: Mikhail Brodsky, Mikhail Boroditsky, Nicholas Frigo, Peter David Magill
  • Patent number: 7546039
    Abstract: Certain exemplary embodiments comprise a method that can comprise, responsive to an instruction to change a setting of a polarization controller, automatically changing a first rotational speed of a birefringent plate associated with the polarization controller to orient the birefringent plate pseudo-randomly over time with respect to a predetermined axis.
    Type: Grant
    Filed: November 28, 2005
    Date of Patent: June 9, 2009
    Assignee: AT&T Intellectual Property, II, L.P.
    Inventors: Mikhail Boroditsky, Mikhail Brodsky, Nicholas Frigo, Peter Magill
  • Publication number: 20080024769
    Abstract: A method, apparatus and system for minimally intrusive fiber identification includes imparting a time-varying modulation onto an optical signal propagating in an optical fiber and subsequently detecting the presence of the time-varying modulation in the optical signal transmitting through the fiber to identify the fiber. In a specific embodiment of the invention, a time-varying curvature is imposed on the fiber to be identified and the presence of the resultant time variation in the transmitted power of a propagating optical signal is subsequently detected for identification of the manipulated fiber.
    Type: Application
    Filed: October 11, 2007
    Publication date: January 31, 2008
    Inventors: Nicholas Frigo, Patrick Iannone, Kenneth Reichmann
  • Publication number: 20080007719
    Abstract: The present invention provides a method for increasing the accuracy of measurement of mean differential group delay (DGD) from the polarization mode dispersion (PMD) in optical fiber. The method includes a systematic correction to mean-square DGD measured with any conventional mean to minimize systematic error caused by finite source bandwidth. The method further includes a systematic correction to the measurement of mean DGD and mean square DGD from statistics of the second-order PMD (SOPMD) obtained with frequency domain PMD-measuring apparatus. The probability density function (PDF) of either the vector or scalar SOPMD is applied, depending on which quantity is measured. The systematic correction is made to minimize the systematic error in estimating mean DGD, caused by finite source bandwidth, to achieve a two-fold reduction of the measurement variance equivalent to doubling the source bandwidth.
    Type: Application
    Filed: September 25, 2007
    Publication date: January 10, 2008
    Applicant: AT&T CORP.
    Inventors: Mikhail Boroditsky, Mikhail Brodsky, Nicholas Frigo, Peter Magill
  • Publication number: 20070147739
    Abstract: A method for fabricating an optical device wherein the device comprises a first substrate wafer with at least one buried optical waveguide on an approximately flat planar surface of the substrate and a second substrate wafer with at least a second buried optical waveguide. The waveguides so formed may be straight or curved along the surface of the wafer or curved by burying the waveguide at varying depth along its length. The second wafer is turned (flipped) and bonded to the first wafer in such a manner that the waveguides, for example, may form an optical coupler or may cross over one another and be in proximate relationship along a region of each. As a result, three-dimensional optical devices are formed avoiding the convention techniques of layering on a single substrate wafer.
    Type: Application
    Filed: February 16, 2007
    Publication date: June 28, 2007
    Inventors: Mark Feuer, Nicholas Frigo
  • Publication number: 20070081767
    Abstract: A method for fabricating an optical device wherein the device comprises a first substrate wafer with at least one buried optical waveguide on an approximately flat planar surface of the substrate and a second substrate wafer with at least a second buried optical waveguide. The waveguides so formed may be straight or curved along the surface of the wafer or curved by burying the waveguide at varying depth along its length. The second wafer is turned (flipped) and bonded to the first wafer in such a manner that the waveguides, for example, may form an optical coupler or may cross over one another and be in proximate relationship along a region of each. As a result, three-dimensional optical devices are formed avoiding the convention techniques of layering on a single substrate wafer.
    Type: Application
    Filed: November 27, 2006
    Publication date: April 12, 2007
    Inventors: Mark Feuer, Nicholas Frigo
  • Publication number: 20070077007
    Abstract: An optical device comprises a first substrate wafer with at least one buried optical waveguide on an approximately flat planar surface of the substrate and a second substrate wafer with at least a second buried optical waveguide. The waveguides so formed may be straight or curved along the surface of the wafer or curved by burying the waveguide at varying depth along its length. The second wafer is turned (flipped) and bonded to the first wafer in such a manner that the waveguides, for example, may form an optical coupler or may cross over one another and be in proximate relationship along a region of each. As a result, three-dimensional optical devices are formed avoiding the convention techniques of layering on a single substrate wafer.
    Type: Application
    Filed: November 22, 2006
    Publication date: April 5, 2007
    Inventors: Mark Feuer, Nicholas Frigo
  • Publication number: 20060251417
    Abstract: A packet-switched WDMA ring network has an architecture utilizing packet stacking and unstacking for enabling nodes to access the entire link capacity by transmitting and receiving packets on available wavelengths. Packets are added and dropped from the ring by optical switches. A flexible credit-based MAC protocol along with an admission algorithm enhance the network throughput capacity.
    Type: Application
    Filed: July 3, 2006
    Publication date: November 9, 2006
    Inventors: Mikhail Boroditsky, Nicholas Frigo, Aleksandra Smiljanic
  • Publication number: 20060153563
    Abstract: A method and a system in which selected wavelengths of a wavelength division multiplexed (WDM) signal are modulated with multicast data for multicasting data services on an optical network. The WDM signal is received from a hub node of the optical network, such as a unidirectional ring network or a bi-directional ring network. A four-port wavelength crossbar switch (4WCS) selectably switches selected wavelengths from the optical network to a modulator loop. The modulator loop includes a multicast modulator that modulates the selected plurality of wavelengths with the multicast data. Each modulated wavelength is then switched back to the optical network by the 4WCS switch, and sent to a plurality of subscriber nodes of the optical network. This architecture allows a facility provider to be physically separated from a content provider, and affords the flexibility of selectively delivering multicast content to individual subscribers.
    Type: Application
    Filed: January 10, 2006
    Publication date: July 13, 2006
    Inventors: Mark Feuer, Nicholas Frigo, Cedric Lam
  • Publication number: 20060120722
    Abstract: A system for providing high connectivity communications over a composite packet-switched optical ring network comprises a plurality of nodes, each node further comprising, an optical crossbar switch connected to the packet-switched optical ring network, a rapidly tunable laser for serially generating a plurality of packets, each packet being generated at a different wavelength and a wavelength stacker for stacking the plurality of serially generated packets to form a composite packet.
    Type: Application
    Filed: January 24, 2006
    Publication date: June 8, 2006
    Inventors: Mikhail Boroditsky, Nicholas Frigo
  • Publication number: 20060115216
    Abstract: A method for fabricating optical devices comprises the steps of preparing a first substrate wafer with at least one buried optical waveguide on an approximately flat planar surface of the substrate and a second substrate wafer with at least a second buried optical waveguide. The waveguides so formed may be straight or be curved along the surface of the wafer or curved by burying the waveguide at varying depth along its length. The second wafer is turned (flipped) and bonded to the first wafer in such a manner that the waveguides, for example, may form an optical coupler or may crossover one another and be in proximate relationship along a region of each. As a result, three dimensional optical devices are formed avoiding conventional techniques of layering on a single substrate wafer. Optical crossover angles may be reduced, for example, to thirty degrees from ninety degrees saving substrate real estate.
    Type: Application
    Filed: January 10, 2006
    Publication date: June 1, 2006
    Inventors: Mark Feuer, Nicholas Frigo
  • Publication number: 20060110088
    Abstract: A method, apparatus and system for minimally intrusive fiber identification includes imparting a time-varying modulation onto an optical signal propagating in an optical fiber and subsequently detecting the presence of the time-varying modulation in the optical signal transmitting through the fiber to identify the fiber. In a specific embodiment of the invention, a time-varying curvature is imposed on the fiber to be identified and the presence of the resultant time variation in the transmitted power of a propagating optical signal is subsequently detected for identification of the manipulated fiber.
    Type: Application
    Filed: December 30, 2005
    Publication date: May 25, 2006
    Inventors: Nicholas Frigo, Patrick Iannone, Kenneth Reichmann
  • Publication number: 20060029392
    Abstract: A system for providing high connectivity communications over a packet-switched optical ring network comprises a core optical ring having at least one node, the node being coupled to a subtending system by an optical crossbar switch, a source for generating a set of packets, a stacker for forming a first composite packet from the set of serial packets, the stacker coupled to the optical crossbar switch, and the stacker further coupled to the source for generating the set of packets, the first composite packet being parallel packets in a single photonic time slot, the first composite packet to be added to the core optical ring in a vacant photonic time slot via the optical crossbar switch, a second composite packet propagating on the core optical ring destined to be dropped at the node for further distribution on the subtending system via the optical crossbar switch, an unstacker for serializing the second composite packet dropped at the node, the unstacker coupled to the optical crossbar switch and a detector
    Type: Application
    Filed: September 30, 2005
    Publication date: February 9, 2006
    Inventors: Mikhail Boroditsky, Nicholas Frigo
  • Publication number: 20060018598
    Abstract: A method for fabricating optical devices comprises the steps of preparing a first substrate wafer with at least one buried optical waveguide on an approximately flat planar surface of the substrate and a second substrate wafer with at least a second buried optical waveguide. The waveguides so formed may be straight or be curved along the surface of the wafer or curved by burying the waveguide at varying depth along its length. The second wafer is turned (flipped) and bonded to the first wafer in such a manner that the waveguides, for example, may form an optical coupler or may crossover one another and be in proximate relationship along a region of each. As a result, three dimensional optical devices are formed avoiding conventional techniques of layering on a single substrate wafer. Optical crossover angles may be reduced, for example, to thirty degrees from ninety degrees saving substrate real estate.
    Type: Application
    Filed: August 31, 2005
    Publication date: January 26, 2006
    Inventors: Mark Feuer, Nicholas Frigo
  • Publication number: 20050232640
    Abstract: An apparatus for measuring a set of frequency-resolved states of polarization (SOP) of an optical signal includes a local oscillator (LO), a polarization scrambler, a coupler for mixing the polarization-scrambled signal with the optical signal to produce a heterodyned signal with a radio frequency (RF) component, and an analyzer for passing a fixed polarization component and resolving the polarization and frequency from the RF component. The apparatus is used for measuring, monitoring or compensating the polarization mode dispersion (PMD) in a working channel of an optical telecommunication system. A method for measuring frequency-resolved SOP of an optical signal includes tuning and polarization-scrambling a local oscillator (LO), mixing the scrambled LO with the optical signal, and resolving the RF signal in frequency and polarization. The method is applied to measure and monitor PMD in a working optical channel, and to dynamically compensate for the PMD.
    Type: Application
    Filed: April 15, 2004
    Publication date: October 20, 2005
    Inventors: Mikhail Boroditsky, Mikhail Brodsky, Nicholas Frigo, Peter Magill
  • Publication number: 20050226620
    Abstract: A four-port wavelength-selective crossbar switch generates an add/drop wavelength signal from a wave division multiplexed (WDM) signal using a plurality of double-sided reflectors that selectively reflects a selected wavelength channel signal of the WDM signal through optical circulators to provide low crosstalk between the dropped and added wavelength signals. The switch also reduces the number of WDM MUX-DEMUX required to one half that compared to a traditional approach. Furthermore, the switch can be designed to be wavelength cyclic with individual free spectral ranges that can be independently set to either through or add/drop states.
    Type: Application
    Filed: April 5, 2004
    Publication date: October 13, 2005
    Inventors: Mark Feuer, Nicholas Frigo, Cedric Lam
  • Publication number: 20050140965
    Abstract: The present invention provides a method for increasing the accuracy of measurement of mean differential group delay (DGD) from the polarization mode dispersion (PMD) in optical fiber. The method includes a systematic correction to mean-square DGD measured with any conventional mean to minimize systematic error caused by finite source bandwidth. The method further includes a systematic correction to the measurement of mean DGD and mean square DGD from statistics of the second-order PMD (SOPMD) obtained with frequency domain PMD-measuring apparatus. The probability density function (PDF) of either the vector or scalar SOPMD is applied, depending on which quantity is measured. The systematic correction is made to minimize the systematic error in estimating mean DGD, caused by finite source bandwidth, to achieve a two-fold reduction of the measurement variance equivalent to doubling the source bandwidth.
    Type: Application
    Filed: December 29, 2003
    Publication date: June 30, 2005
    Inventors: Mikhail Boroditsky, Mikhail Brodsky, Nicholas Frigo, Peter Magill