Patents by Inventor Nicholas P. Carter

Nicholas P. Carter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230418655
    Abstract: Embodiments of systems, methods, and apparatuses for heterogeneous computing are described. In some embodiments, a hardware heterogeneous scheduler dispatches instructions for execution on one or more plurality of heterogeneous processing elements, the instructions corresponding to a code fragment to be processed by the one or more of the plurality of heterogeneous processing elements, wherein the instructions are native instructions to at least one of the one or more of the plurality of heterogeneous processing elements.
    Type: Application
    Filed: June 9, 2023
    Publication date: December 28, 2023
    Inventors: Rajesh M. SANKARAN, Gilbert NEIGER, Narayan RANGANATHAN, Stephen R. VAN DOREN, Joseph NUZMAN, Niall D. MCDONNELL, Michael A. O'HANLON, Lokpraveen B. MOSUR, Tracy Garrett DRYSDALE, Eriko NURVITADHI, Asit K. MISHRA, Ganesh VENKATESH, Deborah T. MARR, Nicholas P. CARTER, Jonathan D. PEARCE, Edward T. GROCHOWSKI, Richard J. GRECO, Robert VALENTINE, Jesus CORBAL, Thomas D. FLETCHER, Dennis R. BRADFORD, Dwight P. MANLEY, Mark J. CHARNEY, Jeffrey J. COOK, Paul CAPRIOLI, Koichi YAMADA, Kent D. GLOSSOP, David B. SHEFFIELD
  • Patent number: 11693691
    Abstract: Embodiments of systems, methods, and apparatuses for heterogeneous computing are described. In some embodiments, a hardware heterogeneous scheduler dispatches instructions for execution on one or more plurality of heterogeneous processing elements, the instructions corresponding to a code fragment to be processed by the one or more of the plurality of heterogeneous processing elements, wherein the instructions are native instructions to at least one of the one or more of the plurality of heterogeneous processing elements.
    Type: Grant
    Filed: July 21, 2021
    Date of Patent: July 4, 2023
    Assignee: Intel Corporation
    Inventors: Rajesh M. Sankaran, Gilbert Neiger, Narayan Ranganathan, Stephen R. Van Doren, Joseph Nuzman, Niall D. McDonnell, Michael A. O'Hanlon, Lokpraveen B. Mosur, Tracy Garrett Drysdale, Eriko Nurvitadhi, Asit K. Mishra, Ganesh Venkatesh, Deborah T. Marr, Nicholas P. Carter, Jonathan D. Pearce, Edward T. Grochowski, Richard J. Greco, Robert Valentine, Jesus Corbal, Thomas D. Fletcher, Dennis R. Bradford, Dwight P. Manley, Mark J. Charney, Jeffrey J. Cook, Paul Caprioli, Koichi Yamada, Kent D. Glossop, David B. Sheffield
  • Patent number: 11416281
    Abstract: Embodiments of systems, methods, and apparatuses for heterogeneous computing are described. In some embodiments, a hardware heterogeneous scheduler dispatches instructions for execution on one or more plurality of heterogeneous processing elements, the instructions corresponding to a code fragment to be processed by the one or more of the plurality of heterogeneous processing elements, wherein the instructions are native instructions to at least one of the one or more of the plurality of heterogeneous processing elements.
    Type: Grant
    Filed: December 31, 2016
    Date of Patent: August 16, 2022
    Assignee: Intel Corporation
    Inventors: Rajesh M. Sankaran, Gilbert Neiger, Narayan Ranganathan, Stephen R. Van Doren, Joseph Nuzman, Niall D. McDonnell, Michael A. O'Hanlon, Lokpraveen B. Mosur, Tracy Garrett Drysdale, Eriko Nurvitadhi, Asit K. Mishra, Ganesh Venkatesh, Deborah T. Marr, Nicholas P. Carter, Jonathan D. Pearce, Edward T. Grochowski, Richard J. Greco, Robert Valentine, Jesus Corbal, Thomas D. Fletcher, Dennis R. Bradford, Dwight P. Manley, Mark J. Charney, Jeffrey J. Cook, Paul Caprioli, Koichi Yamada, Kent D. Glossop, David B. Sheffield
  • Publication number: 20220164218
    Abstract: Embodiments of systems, methods, and apparatuses for heterogeneous computing are described. In some embodiments, a hardware heterogeneous scheduler dispatches instructions for execution on one or more plurality of heterogeneous processing elements, the instructions corresponding to a code fragment to be processed by the one or more of the plurality of heterogeneous processing elements, wherein the instructions are native instructions to at least one of the one or more of the plurality of heterogeneous processing elements.
    Type: Application
    Filed: July 21, 2021
    Publication date: May 26, 2022
    Inventors: Rajesh M. SANKARAN, Gilbert NEIGER, Narayan RANGANATHAN, Stephen R. VAN DOREN, Joseph NUZMAN, Niall D. MCDONNELL, Michael A. O'HANLON, Lokpraveen B. MOSUR, Tracy Garrett DRYSDALE, Eriko NURVITADHI, Asit K. MISHRA, Ganesh VENKATESH, Deborah T. MARR, Nicholas P. CARTER, Jonathan D. PEARCE, Edward T. GROCHOWSKI, Richard J. GRECO, Robert VALENTINE, Jesus CORBAL, Thomas D. FLETCHER, Dennis R. BRADFORD, Dwight P. MANLEY, Mark J. CHARNEY, Jeffrey J. COOK, Paul CAPRIOLI, Koichi YAMADA, Kent D. GLOSSOP, David B. SHEFFIELD
  • Patent number: 11093277
    Abstract: Embodiments of systems, methods, and apparatuses for heterogeneous computing are described. In some embodiments, a hardware heterogeneous scheduler dispatches instructions for execution on one or more plurality of heterogeneous processing elements, the instructions corresponding to a code fragment to be processed by the one or more of the plurality of heterogeneous processing elements, wherein the instructions are native instructions to at least one of the one or more of the plurality of heterogeneous processing elements.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: August 17, 2021
    Assignee: Intel Corporation
    Inventors: Rajesh M. Sankaran, Gilbert Neiger, Narayan Ranganathan, Stephen R. Van Doren, Joseph Nuzman, Niall D. McDonnell, Michael A. O'Hanlon, Lokpraveen B. Mosur, Tracy Garrett Drysdale, Eriko Nurvitadhi, Asit K. Mishra, Ganesh Venkatesh, Deborah T. Marr, Nicholas P. Carter, Jonathan D. Pearce, Edward T. Grochowski, Richard J. Greco, Robert Valentine, Jesus Corbal, Thomas D. Fletcher, Dennis R. Bradford, Dwight P. Manley, Mark J. Charney, Jeffrey J. Cook, Paul Caprioli, Koichi Yamada, Kent D. Glossop, David B. Sheffield
  • Publication number: 20200401440
    Abstract: Embodiments of systems, methods, and apparatuses for heterogeneous computing are described. In some embodiments, a hardware heterogeneous scheduler dispatches instructions for execution on one or more plurality of heterogeneous processing elements, the instructions corresponding to a code fragment to be processed by the one or more of the plurality of heterogeneous processing elements, wherein the instructions are native instructions to at least one of the one or more of the plurality of heterogeneous processing elements.
    Type: Application
    Filed: June 26, 2020
    Publication date: December 24, 2020
    Inventors: Rajesh M. SANKARAN, Gilbert NEIGER, Narayan RANGANATHAN, Stephen R. VAN DOREN, Joseph NUZMAN, Niall D. MCDONNELL, Michael A. O'HANLON, Lokpraveen B. MOSUR, Tracy Garrett DRYSDALE, Eriko NURVITADHI, Asit K. MISHRA, Ganesh VENKATESH, Deborah T. MARR, Nicholas P. CARTER, Jonathan D. PEARCE, Edward T. GROCHOWSKI, Richard J. GRECO, Robert VALENTINE, Jesus CORBAL, Thomas D. FLETCHER, Dennis R. BRADFORD, Dwight P. MANLEY, Mark J. CHARNEY, Jeffrey J. COOK, Paul CAPRIOLI, Koichi YAMADA, Kent D. GLOSSOP, David B. SHEFFIELD
  • Publication number: 20190347125
    Abstract: Embodiments of systems, methods, and apparatuses for heterogeneous computing are described. In some embodiments, a hardware heterogeneous scheduler dispatches instructions for execution on one or more plurality of heterogeneous processing elements, the instructions corresponding to a code fragment to be processed by the one or more of the plurality of heterogeneous processing elements, wherein the instructions are native instructions to at least one of the one or more of the plurality of heterogeneous processing elements.
    Type: Application
    Filed: December 31, 2016
    Publication date: November 14, 2019
    Inventors: Rajesh M. SANKARAN, Gilbert NEIGER, Narayan RANGANATHAN, Stephen R. VAN DOREN, Joseph NUZMAN, Niall D. MCDONNELL, Michael A. O'HANLON, Lokpraveen B. MOSUR, Tracy Garrett DRYSDALE, Eriko NURVITADHI, Asit K. MISHRA, Ganesh VENKATESH, Deborah T. MARR, Nicholas P. CARTER, Jonathan D. PEARCE, Edward T. GROCHOWSKI, Richard J. GRECO, Robert VALENTINE, Jesus CORBAL, Thomas D. FLETCHER, Dennis R. BRADFORD, Dwight P. MANLEY, Mark J. CHARNEY, Jeffrey J. COOK, Paul CAPRIOLI, Koichi YAMADA, Kent D. GLOSSOP, David B. SHEFFIELD
  • Patent number: 10289752
    Abstract: A processor may include a gather-update-scatter accelerator, and an allocator comprising circuitry to direct an instruction to the accelerator for execution. The instruction may include a search index, an operation to be performed, and a scalar data value. The accelerator may include a content-addressable memory (CAM) storing multiple entries, each of which stores a respective index key and a data value associated with the index key. The accelerator may include a CAM controller, which includes circuitry. The CAM controller may be configured to select, based on the information in the instruction, one of the plurality of entries in the CAM on which to operate. The CAM controller may be configured to perform an arithmetic or logical operation on the selected entry dependent on the information in the instruction. The CAM controller may be configured to store a result of the operation in the selected entry in the CAM.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: May 14, 2019
    Assignee: Intel Corporation
    Inventors: Ganesh Venkatesh, Nicholas P. Carter, Deborah T. Marr
  • Publication number: 20180165381
    Abstract: A processor may include a gather-update-scatter accelerator, and circuitry to direct an instruction to the accelerator for execution. The instruction may include a search index, an operation to be performed, and a scalar data value. The accelerator may include a content-associative memory (CAM) storing multiple entries, each of which stores a respective index key and a data value associated with the index key. The accelerator may include a CAM controller, including circuitry to select, based on the information in the instruction, one of the plurality of entries in the CAM on which to operate, an arithmetic logic unit (ALU), including circuitry to perform an arithmetic or logical operation on the selected entry, the operation being dependent on the information in the instruction, and circuitry to store a result of the operation in the selected entry in the CAM.
    Type: Application
    Filed: December 12, 2016
    Publication date: June 14, 2018
    Inventors: Ganesh Venkatesh, Nicholas P. Carter, Deborah T. Marr
  • Publication number: 20140095896
    Abstract: A processor includes at least one power domain, each power domain including at least one core that switchably receives power supply from a voltage regulator and switchably receives a clock signal from a clock source, a cache, and at least one control registers having stored thereon data indicating power management states of the at least one power domain and the cache.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Inventors: Nicholas P. Carter, Joshua B. Fryman, Robert C. Knauerhase, Aditya B. Agrawal, Josep Torrellas
  • Patent number: 8635773
    Abstract: Systems and methods for the automated installation of solar (photovoltaic or PV) modules is disclosed. Embodiments comprise a conveyor system configured to support and deliver a plurality of photovoltaic modules, and a clampless mounting framework comprising an upper rail and a lower rail, the upper and lower rails configured and spaced apart to receive and secure a photovoltaic module. The mounting framework does not require clamps, so once the modules are delivered into place, physical installation is complete.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: January 28, 2014
    Inventor: Nicholas P. Carter
  • Publication number: 20120221884
    Abstract: Generally, this disclosure provides error management across hardware and software layers to enable hardware and software to deliver reliable operation in the face of errors and hardware variation due to aging, manufacturing tolerances, etc. In one embodiment, an error management module is provided that gathers information from the hardware and software layers, and detects and diagnoses errors. A hardware or software recovery technique may be selected to provide efficient operation, and, in some embodiments, the hardware device may be reconfigured to prevent future errors and to permit the hardware device to operate despite a permanent error.
    Type: Application
    Filed: February 28, 2011
    Publication date: August 30, 2012
    Inventors: Nicholas P. Carter, Donald S. Gardner, Eric C. Hannah, Helia Naeimi, Shekhar Y. Borkar, Matthew Haycock
  • Publication number: 20120155885
    Abstract: In some embodiments a light transceiver is associated with a computing rack and is adapted to transmit and/or receive one or more light beams via air to and/or from a second light transceiver associated with a second computing rack to communicate information between the computing rack and the second computing rack. Other embodiments are described and claimed.
    Type: Application
    Filed: December 21, 2010
    Publication date: June 21, 2012
    Inventors: Eric C. Hannah, John L. Gustafson, Shivani A. Sud, Nicholas P. Carter, Joshua B. Fryman, Roy Want
  • Patent number: 6003123
    Abstract: A multiprocessor system having shared memory uses guarded pointers to identify protected segments of memory and permitted access to a location specified by the guarded pointer. Modification of pointers is restricted by the hardware system to limit access to memory segments and to limit operations which can be performed within the memory segments. Global address translation is based on grouping of pages which may be stored across multiple nodes. The page groups are identified in the global translation of each node and, with the virtual address, identify a node in which data is stored. Pages are subdivided into blocks and block status flags are stored for each page. The block status flags indicate whether a memory location may be read or written into at a particular node and indicate to a home node whether a remote node has written new data into a location.
    Type: Grant
    Filed: February 10, 1998
    Date of Patent: December 14, 1999
    Assignee: Massachusetts Institute of Technology
    Inventors: Nicholas P. Carter, Stephen W. Keckler, William J. Dally
  • Patent number: 5845331
    Abstract: A multiprocessor system having shared memory uses guarded pointers to identify protected segments of memory and permitted access to a location specified by the guarded pointer. Modification of pointers is restricted by the hardware system to limit access to memory segments and to limit operations which can be performed within the memory segments. Global address translation is based on grouping of pages which may be stored across multiple nodes. The page groups are identified in the global translation of each node and, with the virtual address, identify a node in which data is stored. Pages are subdivided into blocks and block status flags are stored for each page. The block status flags indicate whether a memory location may be read or written into at a particular node and indicate to a home node whether a remote node has written new data into a location.
    Type: Grant
    Filed: September 28, 1994
    Date of Patent: December 1, 1998
    Assignee: Massachusetts Institute of Technology
    Inventors: Nicholas P. Carter, Stephen W. Keckler, William J. Dally