Patents by Inventor Nicholas T. Bronn

Nicholas T. Bronn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11900217
    Abstract: A quantum computer includes a refrigeration system under vacuum including a containment vessel, a qubit chip contained within a refrigerated vacuum environment defined by the containment vessel. The quantum computer further includes a plurality of interior electromagnetic waveguides and a plurality of exterior electromagnetic waveguides. The quantum computer further includes a hermetic connector assembly operatively connecting the interior electromagnetic waveguides to the exterior electromagnetic waveguides while maintaining the refrigerated vacuum environment. The hermetic connector assembly includes an exterior multi-waveguide connector, an interior multi-waveguide connector, and a dielectric plate arranged between and hermetically sealed with the exterior multi-waveguide connector and the interior multi-waveguide connector. The dielectric plate permits electromagnetic energy when carried by the interior and exterior pluralities of electromagnetic waveguides to pass therethrough.
    Type: Grant
    Filed: November 15, 2022
    Date of Patent: February 13, 2024
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nicholas T. Bronn, Patryk Gumann, Sean Hart, Salvatore B. Olivadese
  • Publication number: 20230252332
    Abstract: A quantum computer includes a refrigeration system under vacuum including a containment vessel, a qubit chip contained within a refrigerated vacuum environment defined by the containment vessel. The quantum computer further includes a plurality of interior electromagnetic waveguides and a plurality of exterior electromagnetic waveguides. The quantum computer further includes a hermetic connector assembly operatively connecting the interior electromagnetic waveguides to the exterior electromagnetic waveguides while maintaining the refrigerated vacuum environment. The hermetic connector assembly includes an exterior multi-waveguide connector, an interior multi-waveguide connector, and a dielectric plate arranged between and hermetically sealed with the exterior multi-waveguide connector and the interior multi-waveguide connector. The dielectric plate permits electromagnetic energy when carried by the interior and exterior pluralities of electromagnetic waveguides to pass therethrough.
    Type: Application
    Filed: November 15, 2022
    Publication date: August 10, 2023
    Applicant: International Business Machines Corporation
    Inventors: Nicholas T. Bronn, Patryk Gumann, Sean Hart, Salvatore B. Olivadese
  • Patent number: 11551125
    Abstract: A quantum computer includes a refrigeration system under vacuum including a containment vessel, a qubit chip contained within a refrigerated vacuum environment defined by the containment vessel. The quantum computer further includes a plurality of interior electromagnetic waveguides and a plurality of exterior electromagnetic waveguides. The quantum computer further includes a hermetic connector assembly operatively connecting the interior electromagnetic waveguides to the exterior electromagnetic waveguides while maintaining the refrigerated vacuum environment. The hermetic connector assembly includes an exterior multi-waveguide connector, an interior multi-waveguide connector, and a dielectric plate arranged between and hermetically sealed with the exterior multi-waveguide connector and the interior multi-waveguide connector. The dielectric plate permits electromagnetic energy when carried by the interior and exterior pluralities of electromagnetic waveguides to pass therethrough.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: January 10, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nicholas T. Bronn, Patryk Gumann, Sean Hart, Salvatore B. Olivadese
  • Patent number: 11537929
    Abstract: A system for transmission of quantum information for quantum error correction includes an ancilla qubit chip including a plurality of ancilla qubits, and a data qubit chip spaced apart from the ancilla qubit chip, the data qubit chip including a plurality of data qubits. The system includes an interposer coupled to the ancilla qubit chip and the data qubit chip, the interposer including a dielectric material and a plurality of superconducting structures formed in the dielectric material. The superconducting structures enable transmission of quantum information between the plurality of data qubits on the data qubit chip and the plurality of ancilla qubits on the ancilla qubit chip via virtual photons for quantum error correction.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: December 27, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nicholas T. Bronn, Daniela F. Bogorin, Patryk Gumann, Sean Hart, Salvatore B. Olivadese
  • Patent number: 11178771
    Abstract: An aspect includes one or more board layers. A first chip cavity is formed within the one or more board layers, wherein a first Josephson amplifier or Josephson mixer is disposed within the first chip cavity. The first Josephson amplifier or Josephson mixer comprises at least one port, each port connected to at least one connector disposed on at least one of the one or more board layers, wherein at least one of the one or more board layers comprises a circuit trace formed on the at least one of the one or more board layers.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: November 16, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Baleegh Abdo, Nicholas T. Bronn, Oblesh Jinka, Salvatore B. Olivadese
  • Publication number: 20210326740
    Abstract: A system for transmission of quantum information for quantum error correction includes an ancilla qubit chip including a plurality of ancilla qubits, and a data qubit chip spaced apart from the ancilla qubit chip, the data qubit chip including a plurality of data qubits. The system includes an interposer coupled to the ancilla qubit chip and the data qubit chip, the interposer including a dielectric material and a plurality of superconducting structures formed in the dielectric material. The superconducting structures enable transmission of quantum information between the plurality of data qubits on the data qubit chip and the plurality of ancilla qubits on the ancilla qubit chip via virtual photons for quantum error correction.
    Type: Application
    Filed: April 16, 2021
    Publication date: October 21, 2021
    Inventors: Nicholas T. Bronn, Daniela F. Bogorin, Patryk Gumann, Sean Hart, Salvatore B. Olivadese
  • Patent number: 11006527
    Abstract: An aspect includes one or more board layers. A first chip cavity is formed within the one or more board layers, wherein a first Josephson amplifier or Josephson mixer is disposed within the first chip cavity. The first Josephson amplifier or Josephson mixer comprises at least one port, each port connected to at least one connector disposed on at least one of the one or more board layers, wherein at least one of the one or more board layers comprises a circuit trace formed on the at least one of the one or more board layers.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: May 11, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Baleegh Abdo, Nicholas T. Bronn, Oblesh Jinka, Salvatore B. Olivadese
  • Patent number: 11005574
    Abstract: A system for optical transduction of quantum information includes a qubit chip including a plurality of data qubits configured to operate at microwave frequencies, and a transduction chip spaced apart from the qubit chip, the transduction chip including a microwave-to-optical frequency transducer. The system includes an interposer coupled to the qubit chip and the transduction chip, the interposer including a dielectric material including a plurality of superconducting microwave waveguides formed therein. The plurality of superconducting microwave waveguides is configured to transmit quantum information from the plurality of data qubits to the microwave-to-optical frequency transducer on the transduction chip, and the microwave-to-optical frequency transducer is configured to transduce the quantum information from the microwave frequencies to optical frequencies.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: May 11, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nicholas T. Bronn, Daniela F. Bogorin, Patryk Gumann, Sean Hart, Salvatore B. Olivadese, Jason S. Orcutt
  • Patent number: 10984335
    Abstract: A system for transmission of quantum information for quantum error correction includes an ancilla qubit chip including a plurality of ancilla qubits, and a data qubit chip spaced apart from the ancilla qubit chip, the data qubit chip including a plurality of data qubits. The system includes an interposer coupled to the ancilla qubit chip and the data qubit chip, the interposer including a dielectric material and a plurality of superconducting structures formed in the dielectric material. The superconducting structures enable transmission of quantum information between the plurality of data qubits on the data qubit chip and the plurality of ancilla qubits on the ancilla qubit chip via virtual photons for quantum error correction.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: April 20, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nicholas T. Bronn, Daniela F. Bogorin, Patryk Gumann, Sean Hart, Salvatore B. Olivadese
  • Patent number: 10891251
    Abstract: In an embodiment, a device includes a first high density interface in a first dilution fridge stage configured to receive a first set of transmission lines. In an embodiment, a device includes a second high density interface in a second dilution fridge stage configured to receive a second set of transmission lines. In an embodiment, a device includes a printed circuit board configured to transfer microwave signals between a first dilution fridge stage and the second dilution fridge stage, the first high density interface and the second high density interface coupled to the printed circuit board.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: January 12, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Salvatore Bernardo Olivadese, Patryk Gumann, Nicholas T. Bronn
  • Publication number: 20200412457
    Abstract: A system for optical transduction of quantum information includes a qubit chip including a plurality of data qubits configured to operate at microwave frequencies, and a transduction chip spaced apart from the qubit chip, the transduction chip including a microwave-to-optical frequency transducer. The system includes an interposer coupled to the qubit chip and the transduction chip, the interposer including a dielectric material including a plurality of superconducting microwave waveguides formed therein. The plurality of superconducting microwave waveguides is configured to transmit quantum information from the plurality of data qubits to the microwave-to-optical frequency transducer on the transduction chip, and the microwave-to-optical frequency transducer is configured to transduce the quantum information from the microwave frequencies to optical frequencies.
    Type: Application
    Filed: June 27, 2019
    Publication date: December 31, 2020
    Inventors: Nicholas T. Bronn, Daniela F. Bogorin, Patryk Gumann, Sean Hart, Salvatore B. Olivadese, Jason S. Orcutt
  • Publication number: 20200394546
    Abstract: A system for transmission of quantum information for quantum error correction includes an ancilla qubit chip including a plurality of ancilla qubits, and a data qubit chip spaced apart from the ancilla qubit chip, the data qubit chip including a plurality of data qubits. The system includes an interposer coupled to the ancilla qubit chip and the data qubit chip, the interposer including a dielectric material and a plurality of superconducting structures formed in the dielectric material. The superconducting structures enable transmission of quantum information between the plurality of data qubits on the data qubit chip and the plurality of ancilla qubits on the ancilla qubit chip via virtual photons for quantum error correction.
    Type: Application
    Filed: June 17, 2019
    Publication date: December 17, 2020
    Inventors: Nicholas T. Bronn, Daniela F. Bogorin, Patryk Gumann, Sean Hart, Salvatore B. Olivadese
  • Publication number: 20200359501
    Abstract: An aspect includes one or more board layers. A first chip cavity is formed within the one or more board layers, wherein a first Josephson amplifier or Josephson mixer is disposed within the first chip cavity. The first Josephson amplifier or Josephson mixer comprises at least one port, each port connected to at least one connector disposed on at least one of the one or more board layers, wherein at least one of the one or more board layers comprises a circuit trace formed on the at least one of the one or more board layers.
    Type: Application
    Filed: July 28, 2020
    Publication date: November 12, 2020
    Inventors: Baleegh Abdo, Nicholas T. Bronn, Oblesh Jinka, Salvatore B. Olivadese
  • Patent number: 10813219
    Abstract: An aspect includes one or more board layers. A first chip cavity is formed within the one or more board layers, wherein a first Josephson amplifier or Josephson mixer is disposed within the first chip cavity. The first Josephson amplifier or Josephson mixer comprises at least one port, each port connected to at least one connector disposed on at least one of the one or more board layers, wherein at least one of the one or more board layers comprises a circuit trace formed on the at least one of the one or more board layers.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: October 20, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Baleegh Abdo, Nicholas T. Bronn, Oblesh Jinka, Salvatore B. Olivadese
  • Publication number: 20200272927
    Abstract: A quantum computer includes a refrigeration system under vacuum including a containment vessel, a qubit chip contained within a refrigerated vacuum environment defined by the containment vessel. The quantum computer further includes a plurality of interior electromagnetic waveguides and a plurality of exterior electromagnetic waveguides. The quantum computer further includes a hermetic connector assembly operatively connecting the interior electromagnetic waveguides to the exterior electromagnetic waveguides while maintaining the refrigerated vacuum environment. The hermetic connector assembly includes an exterior multi-waveguide connector, an interior multi-waveguide connector, and a dielectric plate arranged between and hermetically sealed with the exterior multi-waveguide connector and the interior multi-waveguide connector. The dielectric plate permits electromagnetic energy when carried by the interior and exterior pluralities of electromagnetic waveguides to pass therethrough.
    Type: Application
    Filed: February 21, 2019
    Publication date: August 27, 2020
    Inventors: Nicholas T. Bronn, Patryk Gumann, Sean Hart, Salvatore B. Olivadese
  • Patent number: 10692831
    Abstract: According to an embodiment of the present invention, a method of producing a quantum computer chip includes performing a frequency measurement on a qubit chip bonded to a test interposer chip for qubits on the qubit chip at an operating temperature of the qubit chip. The method further includes pulling the qubit chip apart from the test interposer chip after performing the frequency measurement, and modifying a frequency of a subset of qubits after pulling the qubit chip apart from the test interposer chip. The method further includes bonding the qubit chip to a device interposer chip after modifying the frequency of the subset of qubits.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: June 23, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nicholas T. Bronn, Jared B. Hertzberg, Eric P. Lewandowski, Jae-woong Nah
  • Publication number: 20200151133
    Abstract: In an embodiment, a device includes a first high density interface in a first dilution fridge stage configured to receive a first set of transmission lines. In an embodiment, a device includes a second high density interface in a second dilution fridge stage configured to receive a second set of transmission lines. In an embodiment, a device includes a printed circuit board configured to transfer microwave signals between a first dilution fridge stage and the second dilution fridge stage, the first high density interface and the second high density interface coupled to the printed circuit board.
    Type: Application
    Filed: November 9, 2018
    Publication date: May 14, 2020
    Applicant: International Business Machines Corporation
    Inventors: Salvatore Bernardo Olivadese, Patryk Gumann, Nicholas T. Bronn
  • Patent number: 10644217
    Abstract: A quantum bit (qubit) flip chip assembly may be formed when a qubit it formed on a first chip and an optically transmissive path is formed on a second chip. The two chips may be bonded. The optically transmissive path may provide optical access to the qubit on the first chip.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: May 5, 2020
    Assignee: International Business Machines Corporation
    Inventors: Sami Rosenblatt, Jason S. Orcutt, Martin O. Sandberg, Markus Brink, Vivekananda P. Adiga, Nicholas T. Bronn
  • Publication number: 20190343002
    Abstract: An aspect includes one or more board layers. A first chip cavity is formed within the one or more board layers, wherein a first Josephson amplifier or Josephson mixer is disposed within the first chip cavity. The first Josephson amplifier or Josephson mixer comprises at least one port, each port connected to at least one connector disposed on at least one of the one or more board layers, wherein at least one of the one or more board layers comprises a circuit trace formed on the at least one of the one or more board layers.
    Type: Application
    Filed: July 15, 2019
    Publication date: November 7, 2019
    Inventors: Baleegh Abdo, Nicholas T. Bronn, Oblesh Jinka, Salvatore B. Olivadese
  • Publication number: 20190343003
    Abstract: An aspect includes one or more board layers. A first chip cavity is formed within the one or more board layers, wherein a first Josephson amplifier or Josephson mixer is disposed within the first chip cavity. The first Josephson amplifier or Josephson mixer comprises at least one port, each port connected to at least one connector disposed on at least one of the one or more board layers, wherein at least one of the one or more board layers comprises a circuit trace formed on the at least one of the one or more board layers.
    Type: Application
    Filed: July 15, 2019
    Publication date: November 7, 2019
    Inventors: Baleegh Abdo, Nicholas T. Bronn, Oblesh Jinka, Salvatore B. Olivadese