Patents by Inventor Nicky Caiazza

Nicky Caiazza has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11884916
    Abstract: The present invention provides materials and methods useful for error correction of nucleic acid molecules. In one embodiment of the invention, a first plurality of double-stranded nucleic acid molecules having a nucleotide mismatch are fragmented by exposure to a molecule having unidirectional mismatch endonuclease activity. The nucleic acid molecules are cut at the mismatch site or near the mismatch site, leaving a double-stranded nucleic acid molecule having a mismatch at the end or near end of the molecule. The nucleic acid molecule is then exposed to a molecule having unidirectional exonuclease activity to remove the mismatched nucleotide. The missing nucleotides can then be filled in by the action of, e.g., a molecule having DNA polymerase activity. The result is double-stranded nucleic acid molecules with a decreased frequency of nucleotide mismatches.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: January 30, 2024
    Assignee: Telesis Bio Inc.
    Inventors: Daniel G Gibson, Nicky Caiazza, Toby H. Richardson
  • Patent number: 11634735
    Abstract: The present invention provides for novel metabolic pathways leading to propanol, alcohol or polyol formation in a consolidated bioprocessing system (CBP), where lignocellulosic biomass is efficiently converted to such products. More specifically, the invention provides for a recombinant microorganism, where the microorganism expresses one or more native and/or heterologous enzymes; where the one or more enzymes function in one or more engineered metabolic pathways to achieve: (1) conversion of a carbohydrate source to 1,2-propanediol, isopropropanol, ethanol and/or glycerol; (2) conversion of a carbohydrate source to n-propanol and isopropanol; (3) conversion of a carbohydrate source to isopropanol and methanol; or (4) conversion of a carbohydrate source to propanediol and acetone; wherein the one or more native and/or heterologous enzymes is activated, upregulated or downregulated.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: April 25, 2023
    Assignee: Lallemand Hungary Liquidity Management LLC
    Inventors: John E. McBride, Vineet Rajgarhia, Arthur J. Shaw, IV, Shital A. Tripathi, Elena Brevnova, Nicky Caiazza, Johannes Pieter Van Dijken, Allan C. Froehlich, William Ryan Sillers, James H. Flatt
  • Publication number: 20230028975
    Abstract: The present invention is directed to a yeast strain, or strains, secreting a full suite, or any subset of that full suite, of enzymes to hydrolyze corn starch, corn fiber, lignocellulose, (including enzymes that hydrolyze linkages in cellulose, hemicellulose, and between lignin and carbohydrates) and to utilize pentose sugars (xylose and arabinose). The invention is also directed to the set of proteins that are well expressed in yeast for each category of enzymatic activity. The resulting strain, or strains can be used to hydrolyze starch and cellulose simultaneously. The resulting strain, or strains can be also metabolically engineered to produce less glycerol and uptake acetate. The resulting strain, or strains can also be used to produce ethanol from granular starch without liquefaction.
    Type: Application
    Filed: October 13, 2021
    Publication date: January 26, 2023
    Inventors: Elena Brevnova, John E. McBride, Erin Wiswall, Kevin S. Wenger, Nicky Caiazza, Heidi Hau, Aaron Argyros, Frank Agbogbo, Charles F. Rice, Trisha Barrett, John S. Bardsley, Abigail Foster, Anne K. Warner, Mark Mellon, Ryan Skinner, Indraneel Shikhare, Riaan Den Haan, Chhayal V. Gandhi, Alan Belcher, Vineet B. Rajgarhia, Allan C. Froehlich, Kristen M. Deleault, Emily Stonehouse, Shital A. Tripathi, Jennifer Gosselin, Yin-Ying Chiu, Haowen Xu
  • Publication number: 20220098600
    Abstract: The present invention provides for novel metabolic pathways to reduce or eliminate glycerol production and increase product formation. More specifically, the invention provides for a recombinant microorganism comprising a deletion of one or more native enzymes that function to produce glycerol and/or regulate glycerol synthesis and one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to convert a carbohydrate source, such as lignocellulose, to a product, such as ethanol, wherein the one or more native and/or heterologous enzymes is activated, upregulated, or downregulated.
    Type: Application
    Filed: May 10, 2021
    Publication date: March 31, 2022
    Inventors: Aaron Argyros, William Ryan Sillers, Trisha Barrett, Nicky Caiazza, Arthur J. Shaw, IV
  • Patent number: 11193130
    Abstract: The present invention is directed to a yeast strain, or strains, secreting a full suite, or any subset of that full suite, of enzymes to hydrolyze corn starch, corn fiber, lignocellulose, (including enzymes that hydrolyze linkages in cellulose, hemicellulose, and between lignin and carbohydrates) and to utilize pentose sugars (xylose and arabinose). The invention is also directed to the set of proteins that are well expressed in yeast for each category of enzymatic activity. The resulting strain, or strains can be used to hydrolyze starch and cellulose simultaneously. The resulting strain, or strains can be also metabolically engineered to produce less glycerol and uptake acetate. The resulting strain, or strains can also be used to produce ethanol from granular starch without liquefaction.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: December 7, 2021
    Assignees: Lallemand Hungary Liquidity Management LLC, Stellenbosch University
    Inventors: Elena Brevnova, John E. McBride, Erin Wiswall, Kevin S. Wenger, Nicky Caiazza, Heidi Hau, Aaron Argyros, Frank Agbogbo, Charles F. Rice, Trisha Barrett, John S. Bardsley, Abigail Foster, Anne K. Warner, Mark Mellon, Ryan Skinner, Indraneel Shikhare, Riaan Den Haan, Chhayal V. Gandhi, Alan Belcher, Vineet B. Rajgarhia, Allan C. Froehlich, Kristen M. Deleault, Emily Stonehouse, Shital A. Tripathi, Jennifer Gosselin, Yin-Ying Chiu, Haowen Xu
  • Patent number: 11034967
    Abstract: The present invention provides for novel metabolic pathways to reduce or eliminate glycerol production and increase product formation. More specifically, the invention provides for a recombinant microorganism comprising a deletion of one or more native enzymes that function to produce glycerol and/or regulate glycerol synthesis and one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to convert a carbohydrate source, such as lignocellulose, to a product, such as ethanol, wherein the one or more native and/or heterologous enzymes is activated, upregulated, or downregulated.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: June 15, 2021
    Assignee: Lallemand Hungary Liquidity Management LLC
    Inventors: Aaron Argyros, William Ryan Sillers, Trisha Barrett, Nicky Caiazza, Arthur J. Shaw, IV
  • Publication number: 20200332286
    Abstract: The present invention provides materials and methods useful for error correction of nucleic acid molecules. In one embodiment of the invention, a first plurality of double-stranded nucleic acid molecules having a nucleotide mismatch are fragmented by exposure to a molecule having unidirectional mismatch endonuclease activity. The nucleic acid molecules are cut at the mismatch site or near the mismatch site, leaving a double-stranded nucleic acid molecule having a mismatch at the end or near end of the molecule. The nucleic acid molecule is then exposed to a molecule having unidirectional exonuclease activity to remove the mismatched nucleotide. The missing nucleotides can then be filled in by the action of, e.g., a molecule having DNA polymerase activity. The result is double-stranded nucleic acid molecules with a decreased frequency of nucleotide mismatches.
    Type: Application
    Filed: July 2, 2020
    Publication date: October 22, 2020
    Inventors: Daniel G. Gibson, Nicky Caiazza, Toby H. Richardson
  • Publication number: 20200325500
    Abstract: The present invention provides for novel metabolic pathways leading to propanol, alcohol or polyol formation in a consolidated bioprocessing system (CBP), where lignocellulosic biomass is efficiently converted to such products. More specifically, the invention provides for a recombinant microorganism, where the microorganism expresses one or more native and/or heterologous enzymes; where the one or more enzymes function in one or more engineered metabolic pathways to achieve: (1) conversion of a carbohydrate source to 1,2-propanediol, isopropropanol, ethanol and/or glycerol; (2) conversion of a carbohydrate source to n-propanol and isopropanol; (3) conversion of a carbohydrate source to isopropanol and methanol; or (4) conversion of a carbohydrate source to propanediol and acetone; wherein the one or more native and/or heterologous enzymes is activated, upregulated or downregulated.
    Type: Application
    Filed: July 1, 2020
    Publication date: October 15, 2020
    Inventors: John E. McBride, Vineet Rajgarhia, Arthur J. Shaw, IV, Shital A. Tripathi, Elena Brevnova, Nicky Caiazza, Johannes Pieter Van Dijken, Allan C. Froehlich, William Ryan Sillers, James H. Flatt
  • Patent number: 10767196
    Abstract: The present invention provides for the manipulation of cofactor usage in a recombinant host cell to increase the formation of desirable products. In some embodiments, the invention provides for a recombinant microorganism comprising a mutation in one or more native enzymes such that their cofactor specificity is altered in such a way that overall cofactor usage in the cell is balanced for a specified pathway and there is an increase in a specific product formation within the cell. In some embodiments, endogenous enzymes are replaced by enzymes with an alternate cofactor specificity from a different species.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: September 8, 2020
    Assignees: Enchi Corporation, Dartmouth College, UT-Battelle, LLC
    Inventors: Jonathan Lo, Adam M. Guss, Johannes P. Van Dijken, Arthur J. Shaw, IV, Daniel G. Olson, Christopher D. Herring, D. Aaron Argyros, Nicky Caiazza
  • Patent number: 10704041
    Abstract: The present invention provides materials and methods useful for error correction of nucleic acid molecules. In one embodiment of the invention, a first plurality of double-stranded nucleic acid molecules having a nucleotide mismatch are fragmented by exposure to a molecule having unidirectional mismatch endonuclease activity. The nucleic acid molecules are cut at the mismatch site or near the mismatch site, leaving a double-stranded nucleic acid molecule having a mismatch at the end or near end of the molecule. The nucleic acid molecule is then exposed to a molecule having unidirectional exonuclease activity to remove the mismatched nucleotide. The missing nucleotides can then be filled in by the action of, e.g., a molecule having DNA polymerase activity. The result is double-stranded nucleic acid molecules with a decreased frequency of nucleotide mismatches.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: July 7, 2020
    Assignee: Codex DNA, Inc.
    Inventors: Daniel G. Gibson, Nicky Caiazza, Toby H. Richardson
  • Publication number: 20200095592
    Abstract: The present invention is directed to a yeast strain, or strains, secreting a full suite, or any subset of that full suite, of enzymes to hydrolyze corn starch, corn fiber, lignocellulose, (including enzymes that hydrolyze linkages in cellulose, hemicellulose, and between lignin and carbohydrates) and to utilize pentose sugars (xylose and arabinose). The invention is also directed to the set of proteins that are well expressed in yeast for each category of enzymatic activity. The resulting strain, or strains can be used to hydrolyze starch and cellulose simultaneously. The resulting strain, or strains can be also metabolically engineered to produce less glycerol and uptake acetate. The resulting strain, or strains can also be used to produce ethanol from granular starch without liquefaction.
    Type: Application
    Filed: May 30, 2019
    Publication date: March 26, 2020
    Inventors: Elena Brevnova, John E. McBride, Erin Wiswall, Kevin S. Wenger, Nicky Caiazza, Heidi Hau, Aaron Argyros, Frank Agbogbo, Charles F. Rice, Trisha Barrett, John S. Bardsley, Abigail Foster, Anne K. Warner, Mark Mellon, Ryan Skinner, Indraneel Shikhare, Riaan Den Haan, Chhayal V. Gandhi, Alan Belcher, Vineet B. Rajgarhia, Allan C. Froehlich, Kristen M. Deleault, Emily Stonehouse, Shital A. Tripathi, Jennifer Gosselin, Yin-Ying Chiu, Haowen Xu
  • Patent number: 10385345
    Abstract: The present invention is directed to a yeast strain, or strains, secreting a full suite, or any subset of that full suite, of enzymes to hydrolyze corn starch, corn fiber, lignocellulose, (including enzymes that hydrolyze linkages in cellulose, hemicellulose, and between lignin and carbohydrates) and to utilize pentose sugars (xylose and arabinose). The invention is also directed to the set of proteins that are well expressed in yeast for each category of enzymatic activity. The resulting strain, or strains can be used to hydrolyze starch and cellulose simultaneously. The resulting strain, or strains can be also metabolically engineered to produce less glycerol and uptake acetate. The resulting strain, or strains can also be used to produce ethanol from granular starch without liquefaction.
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: August 20, 2019
    Assignees: Lallemand Hungary Liquidity Management LLC, Universiteit Stellenbosch
    Inventors: Elena Brevnova, John E. McBride, Erin Wiswall, Kevin S. Wenger, Nicky Caiazza, Heidi Hau, Aaron Argyros, Frank Agbogbo, Charles F. Rice, Trisha Barrett, John S. Bardsley, Abigail Foster, Anne K. Warner, Mark Mellon, Ryan Skinner, Indraneel Shikhare, Riaan Den Haan, Chhayal V. Gandhi, Alan Belcher, Vineet B. Rajgarhia, Allan C. Froehlich, Kristen M. Deleault, Emily Stonehouse, Shital A. Tripathi, Jennifer Gosselin, Yin-Ying Chiu, Haowen Xu
  • Patent number: 10294484
    Abstract: The present invention is directed to a yeast strain, or strains, secreting a full suite, or any subset of that full suite, of enzymes to hydrolyze corn starch, corn fiber, lignocellulose, (including enzymes that hydrolyze linkages in cellulose, hemicellulose, and between lignin and carbohydrates) and to utilize pentose sugars (xylose and arabinose). The invention is also directed to the set of proteins that are well expressed in yeast for each category of enzymatic activity. The resulting strain, or strains can be used to hydrolyze starch and cellulose simultaneously. The resulting strain, or strains can be also metabolically engineered to produce less glycerol and uptake acetate. The resulting strain, or strains can also be used to produce ethanol from granular starch without liquefaction.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: May 21, 2019
    Assignees: Lallemand Hungary Liquidity Management LLC, Stellenbosch University
    Inventors: Elena Brevnova, John E. McBride, Erin Wiswall, Kevin S. Wenger, Nicky Caiazza, Heidi Lau, Aaron Argyros, Frank Agbogbo, Charles F. Rice, Trisha Barrett, John S. Bardsley, Abigail Foster, Anne K. Warner, Mark Mellon, Ryan Skinner, Indraneel Shikhare, Riaan Den Haan, Chhayal V. Gandhi, Alan Belcher, Vineet B. Rajgarhia, Allan C. Froehlich, Kristen M. Deleault, Emily Stonehouse, Shital A. Tripathi, Jennifer Gosselin, Yin-Ying Chiu, Haowen Xu
  • Patent number: 10047380
    Abstract: The present invention provides a microorganism capable of fermenting arabinose to a desired product such as ethanol. In some embodiments, the organism is also capable of fermenting xylose. In some embodiments, the organism is capable of fermenting arabinose and xylose, and expresses one or more cellulases.
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: August 14, 2018
    Assignee: Lallemand Hungary Liquidity Management LLC
    Inventors: D. Aaron Argyros, Nicky Caiazza, Trisha F. Barrett, Anne K. Warner
  • Publication number: 20180208951
    Abstract: The present in provides for novel metabolic pathways leading to propanol, alcohol or polyol formation in a consolidated bioprocessing system (CBP), where lignocellulosic biomass is efficiently converted to such products. More specifically, the invention provides for a recombinant microorganism, where the microorganism expresses one or more native and/or heterologous enzymes; where the one or more enzymes function in one or more engineered metabolic pathways to achieve: (1) conversion of a carbohydrate source to 1,2-propanediol, isopropropanol, ethanol and/or glycerol; (2) conversion of a carbohydrate source to n-propanol and isopropanol; (3) conversion of a carbohydrate source to isopropanol and methanol; or (4) conversion of a carbohydrate source to propanediol and acetone; wherein the one or more native and/or heterologous enzymes is activated, upregulated or downregulated.
    Type: Application
    Filed: March 21, 2018
    Publication date: July 26, 2018
    Inventors: John E. McBride, Vineet Rajgarhia, Arthur J. Shaw, IV, Shital A. Tripathi, Elena Brevnova, Nicky Caiazza, Johannes Pieter Van Dijken, Allan C. Froehlich, William Ryan Sillers, James H. Flatt
  • Patent number: 9957530
    Abstract: The present invention provides for novel metabolic pathways leading to propanol, alcohol or polyol formation in a consolidated bioprocessing system (CBP), where lignocellulosic biomass is efficiently converted to such products. More specifically, the invention provides for a recombinant microorganism, where the microorganism expresses one or more native and/or heterologous enzymes; where the one or more enzymes function in one or more engineered metabolic pathways to achieve: (1) conversion of a carbohydrate source to 1,2-propanediol, isopropropanol, ethanol and/or glycerol; (2) conversion of a carbohydrate source to n-propanol and isopropanol; (3) conversion of a carbohydrate source to isopropanol and methanol; or (4) conversion of a carbohydrate source to propanediol and acetone; wherein the one or more native and/or heterologous enzymes is activated, upregulated or downregulated.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: May 1, 2018
    Assignee: Lallemand Hungary Liquidity Management LLC
    Inventors: John E. McBride, Vineet Rajgarhia, Arthur J. Shaw, IV, Shital A. Tripathi, Elena Brevnova, Nicky Caiazza, Johannes Pieter Van Dijken, Allan C. Froehlich, William Ryan Sillers, James H. Flatt
  • Publication number: 20180051280
    Abstract: The present invention provides materials and methods useful for error correction of nucleic acid molecules. In one embodiment of the invention, a first plurality of double-stranded nucleic acid molecules having a nucleotide mismatch are fragmented by exposure to a molecule having unidirectional mismatch endonuclease activity. The nucleic acid molecules are cut at the mismatch site or near the mismatch site, leaving a double-stranded nucleic acid molecule having a mismatch at the end or near end of the molecule. The nucleic acid molecule is then exposed to a molecule having unidirectional exonuclease activity to remove the mismatched nucleotide. The missing nucleotides can then be filled in by the action of, e.g., a molecule having DNA polymerase activity. The result is double-stranded nucleic acid molecules with a decreased frequency of nucleotide mismatches.
    Type: Application
    Filed: August 2, 2017
    Publication date: February 22, 2018
    Inventors: Daniel G. Gibson, Nicky Caiazza, Toby H. Richardson
  • Publication number: 20170356000
    Abstract: The present invention provides for novel metabolic pathways to reduce or eliminate glycerol production and increase product formation. More specifically, the invention provides for a recombinant microorganism comprising a deletion of one or more native enzymes that function to produce glycerol and/or regulate glycerol synthesis and one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to convert a carbohydrate source, such as lignocellulose, to a product, such as ethanol, wherein the one or more native and/or heterologous enzymes is activated, upregulated, or downregulated.
    Type: Application
    Filed: June 30, 2017
    Publication date: December 14, 2017
    Inventors: Aaron Argyros, William Ryan Sillers, Trisha Barrett, Nicky Caiazza, Arthur J. Shaw, IV
  • Patent number: 9803221
    Abstract: The present invention provides for the manipulation of carbon flux in a recombinant host cell to increase the formation of desirable products. The invention relates to cellulose-digesting organisms that have been genetically modified to allow the production of ethanol at a high yield by redirecting carbon flux at key steps of central metabolism.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: October 31, 2017
    Assignees: Enchi Corporation, Dartmouth College
    Inventors: Yu Deng, Daniel G. Olson, Johannes Pieter van Dijken, Arthur J. Shaw, IV, Aaron Argyros, Trisha Barrett, Nicky Caiazza, Christopher D. Herring, Stephen R. Rogers, Frank Agbogbo
  • Patent number: 9771576
    Abstract: The present invention provides materials and methods useful for error correction of nucleic acid molecules. In one embodiment of the invention, a first plurality of double-stranded nucleic acid molecules having a nucleotide mismatch are fragmented by exposure to a molecule having unidirectional mismatch endonuclease activity. The nucleic acid molecules are cut at the mismatch site or near the mismatch site, leaving a double-stranded nucleic acid molecule having a mismatch at the end or near end of the molecule. The nucleic acid molecule is then exposed to a molecule having unidirectional exonuclease activity to remove the mismatched nucleotide. The missing nucleotides can then be filled in by the action of, e.g., a molecule having DNA polymerase activity. The result is double-stranded nucleic acid molecules with a decreased frequency of nucleotide mismatches.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: September 26, 2017
    Assignee: Synthetic Genomics, Inc.
    Inventors: Daniel G. Gibson, Nicky Caiazza, Toby H. Richardson